Role of Melatonin, Galanin, and RFamide Neuropeptides QRFP26 and QRFP43 in the Neuroendocrine Control of Pancreatic β-Cell Function.

作者: Iacopo Gesmundo , Tania Villanova , Dana Banfi , Giacomo Gamba , Riccarda Granata

DOI: 10.3389/FENDO.2017.00143

关键词:

摘要: Glucose homeostasis is finely regulated by a number of hormones and peptides released mainly from the brain, gastrointestinal tract muscle, regulating pancreatic secretion through cellular receptors their signal transduction cascades. The endocrine function pancreas controlled islets within exocrine tissue that release like insulin, glucagon, somatostatin, polypeptide ghrelin. Moreover, both functions are variety hormonal neural mechanisms, such as ghrelin, glucagon-like peptide (GLP-1), glucose-dependent insulinotropic (GIP) or inhibitory somatostatin. In this review, we describe role neurohormones have been less characterized compared to others, on regulation insulin secretion. particular, will focus melatonin, galanin RFamide neuropeptides QRFP26 QRFP43, which display either insulinostatic effects. fact, in addition other hormones, amino acids, cytokines proteins, brain-derived now considered key regulators glucose homeostasis, representing potential therapeutic targets for treatment diabetes obesity.

参考文章(116)
Petrusewicz J, Ruczyński J, Rekowski P, Kamińska B, Konstański Z, Olkowicz M, Cybal M, New galanin(1-15) analogues modified in positions 9, 10 and 11 act as galanin antagonists on glucose-induced insulin secretion. Journal of Physiology and Pharmacology. ,vol. 58, pp. 859- 872 ,(2007)
S-A. Hobson, A. Bacon, C. R. Elliot-Hunt, F. E. Holmes, N. C. H. Kerr, R. Pope, P. Vanderplank, D. Wynick, Galanin acts as a trophic factor to the central and peripheral nervous systems. Experientia. Supplementum. ,vol. 102, pp. 25- 38 ,(2010) , 10.1007/978-3-0346-0228-0_3
Eckhard Mühlbauer, Elke Albrecht, Ivonne Bazwinsky-Wutschke, Elmar Peschke, Melatonin influences insulin secretion primarily via MT1 receptors in rat insulinoma cells (INS‐1) and mouse pancreatic islets Journal of Pineal Research. ,vol. 52, pp. 446- 459 ,(2011) , 10.1111/J.1600-079X.2011.00959.X
E. Adeghate, A. S. Ponery, Large reduction in the number of galanin-immunoreactive cells in pancreatic islets of diabetic rats. Journal of Neuroendocrinology. ,vol. 13, pp. 706- 710 ,(2001) , 10.1046/J.1365-2826.2001.00682.X
Graham J. Dockray, The expanding family of -RFamide peptides and their effects on feeding behaviour. Experimental Physiology. ,vol. 89, pp. 229- 235 ,(2004) , 10.1113/EXPPHYSIOL.2004.027169
Ilga Misane, Haleh Razani, Fu-Hua Wang anders Jansson, Kjell Fuxe, Sven Ove Ögren, Intraventricular galanin modulates a 5-HT1A receptor-mediated behavioural response in the rat European Journal of Neuroscience. ,vol. 10, pp. 1230- 1240 ,(1998) , 10.1046/J.1460-9568.1998.00132.X
Tooru Shimosegawa, Shigeki Moriizumi, Masaru Koizumi, Junya Kashimura, Noboru Yanaihara, Takayoshi Toyota, Immunohistochemical demonstration of galaninlike immunoreactive nerves in the human pancreas. Gastroenterology. ,vol. 102, pp. 263- 271 ,(1992) , 10.1016/0016-5085(92)91809-I
J. T. Lerner, R. Sankar, A. M. Mazarati, Galanin and Epilepsy Experientia. Supplementum. ,vol. 102, pp. 183- 194 ,(2010) , 10.1007/978-3-0346-0228-0_13
T. J. McDonald, E. Tu, S. Brenner, P. Zabel, M. Behme, C. Panchal, I. Hramiak, W. B. Barnett, D. Miller, J. Dupre, Canine, human, and rat plasma insulin responses to galanin administration : species response differences American Journal of Physiology-endocrinology and Metabolism. ,vol. 266, ,(1994) , 10.1152/AJPENDO.1994.266.4.E612
F.E. Bauer, A. Zintel, M.J. Kenny, D. Calder, M.A. Ghatei, S.R. Bloom, Inhibitory effect of galanin on postprandial gastrointestinal motility and gut hormone release in humans. Gastroenterology. ,vol. 97, pp. 260- 264 ,(1989) , 10.1016/0016-5085(89)90059-0