Stochastic Models for Fractional Calculus

作者: Mark M. Meerschaert , Alla Sikorskii

DOI:

关键词:

摘要: Preface 1 Introduction 1.1 The traditional diffusion model 1.2 Fractional 2 Derivatives 2.1 Grunwald formula 2.2 More fractional derivatives 2.3 Caputo derivative 2.4 Time-fractional 3 Stable Limit Distributions 3.1 Infinitely divisible laws 3.2 characteristic functions 3.3 Semigroups 3.4 Poisson approximation 3.5 Shifted 3.6 Triangular arrays 3.7 One-sided stable limits 3.8 Two-sided 4 Continuous Time Random Walks 4.1 Regular variation 4.2 Central Theorem 4.3 time random walks 4.4 Convergence in Skorokhod space 4.5 CTRW governing equations 5 Computations R 5.1 codes for 5.2 Sample path simulations 6 Vector Diffusion 6.1 6.2 with heavy tails 6.3 of vectors 6.4 6.5 equation 6.6 Operator 6.7 regular 6.8 Generalized domains attraction 7 Applications and Extensions 7.1 LePage Series Representation 7.2 Tempered 7.3 7.4 Pearson 7.5 Classification diffusions 7.6 Spectral representations the solutions Kolmogorov 7.7 Brownian motion 7.8 fields 7.9 7.10 vector Bibliography Index

参考文章(32)
Jan Rosiński, Tempering stable processes Stochastic Processes and their Applications. ,vol. 117, pp. 677- 707 ,(2007) , 10.1016/J.SPA.2006.10.003
Aleksei V. Chechkin, Vsevolod Yu. Gonchar, Joseph Klafter, Ralf Metzler, Natural cutoff in Lévy flights caused by dissipative nonlinearity. Physical Review E. ,vol. 72, pp. 010101- ,(2005) , 10.1103/PHYSREVE.72.010101
A. Jurlewicz, P. Kern, M.M. Meerschaert, H.-P. Scheffler, Fractional governing equations for coupled random walks Computers & Mathematics With Applications. ,vol. 64, pp. 3021- 3036 ,(2012) , 10.1016/J.CAMWA.2011.10.010
Gennady Samorodnitsky, Murad S. Taqqu, Stable Non-Gaussian Random Processes Journal of the American Statistical Association. ,vol. 90, pp. 805- ,(1995) , 10.1201/9780203738818
Rina Schumer, David A. Benson, Mark M. Meerschaert, Stephen W. Wheatcraft, Eulerian derivation of the fractional advection-dispersion equation. Journal of Contaminant Hydrology. ,vol. 48, pp. 69- 88 ,(2001) , 10.1016/S0169-7722(00)00170-4
A. G. Davenport, The spectrum of horizontal gustiness near the ground in high winds Quarterly Journal of the Royal Meteorological Society. ,vol. 88, pp. 197- 198 ,(1962) , 10.1002/QJ.49708837618
P. Flandrin, On the spectrum of fractional Brownian motions IEEE Transactions on Information Theory. ,vol. 35, pp. 197- 199 ,(1989) , 10.1109/18.42195
Mark M. Meerschaert, Hans-Peter Scheffler, Triangular array limits for continuous time random walks Stochastic Processes and their Applications. ,vol. 118, pp. 1606- 1633 ,(2008) , 10.1016/J.SPA.2007.10.005