Wavelet-Based Classification of Hyperspectral Images Using Extended Morphological Profiles on Graphics Processing Units

作者: Pablo Quesada-Barriuso , Francisco Arguello , Dora B. Heras , Jon Atli Benediktsson

DOI: 10.1109/JSTARS.2015.2394778

关键词:

摘要: The availability of graphics processing units (GPUs) provides a low-cost solution to real-time processing, which may benefit many remote sensing applications. In this paper, spectral–spatial classification scheme for hyperspectral images is specifically adapted computing on GPUs. It based wavelets, extended morphological profiles (EMPs), and support vector machine (SVM). Additionally, preprocessing stage used remove noise in the original image. local computation techniques proposed makes them particularly suitable parallel by blocks threads GPU. Moreover, block-asynchronous updating process applied EMP speedup reconstruction. results over different show that execution can be speeded up $8.2\times$ compared an efficient OpenMP implementation, achieving image while maintaining high accuracy values scheme.

参考文章(32)
Pablo Quesada-Barriuso, Francisco Argüello, Dora B. Heras, Computing Efficiently Spectral-Spatial Classification of Hyperspectral Images on Commodity GPUs Springer, Cham. pp. 19- 42 ,(2014) , 10.1007/978-3-319-01649-8_2
Joanne M. Garrett, Anthony J. Viera, Understanding interobserver agreement: the kappa statistic. Family Medicine. ,vol. 37, pp. 360- 363 ,(2005)
Pavel Karas, Efficient Computation of Morphological Greyscale Reconstruction mathematical and engineering methods in computer science. pp. 61- ,(2011) , 10.4230/OASICS.MEMICS.2010.54
Wen-mei W. Hwu, David B. Kirk, Programming Massively Parallel Processors: A Hands-on Approach Morgan Kaufmann. ,(2012)
Antonio Plaza, Prashanth Reddy Marpu, Jon Atli Benediktsson, Sergio Bernabé, A new parallel tool for classification of remotely sensed imagery Computers & Geosciences. ,vol. 46, pp. 208- 218 ,(2012) , 10.1016/J.CAGEO.2011.12.009
Pablo Quesada-Barriuso, Dora B. Heras, Francisco Argüello, Efficient 2D and 3D watershed on graphics processing unit: block-asynchronous approaches based on cellular automata Computers & Electrical Engineering. ,vol. 39, pp. 2638- 2655 ,(2013) , 10.1016/J.COMPELECENG.2013.04.020
Qi Li, Raied Salman, Erik Test, Robert Strack, Vojislav Kecman, GPUSVM: a comprehensive CUDA based support vector machine package Central European Journal of Computer Science. ,vol. 1, pp. 387- 405 ,(2011) , 10.2478/S13537-011-0028-7
M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, J. C. Tilton, Advances in Spectral-Spatial Classification of Hyperspectral Images Proceedings of the IEEE. ,vol. 101, pp. 652- 675 ,(2013) , 10.1109/JPROC.2012.2197589
S. Bernabe, S. Lopez, A. Plaza, R. Sarmiento, GPU Implementation of an Automatic Target Detection and Classification Algorithm for Hyperspectral Image Analysis IEEE Geoscience and Remote Sensing Letters. ,vol. 10, pp. 221- 225 ,(2013) , 10.1109/LGRS.2012.2198790