Rock avalanche runout prediction using stochastic analysis of a regional dataset

作者: A. Mitchell , S. McDougall , N. Nolde , M.-A. Brideau , J. Whittall

DOI: 10.1007/S10346-019-01331-3

关键词:

摘要: Rock avalanches involve extremely rapid, flow-like movement of fragmented rock with extreme destructive potential. With increasing development pressures in mountainous regions, there is a need for simple, stochastic estimates runout distances to aid hazard assessments and prioritize sites more detailed investigation. To support the an empirical predictive tool, systematic method was used describe 49 Canadian Cordillera, which had been documented literature but not previously compiled into regional inventory. These cases were described using measured or estimated numerical values volume, fall height, length, total impacted area ratio over length (referred as mean path width), qualitative descriptions topographic confinement, substrate material source geology. Linear regressions fit data, attributes treated indicator variables. A strong relationship found distance predicted from height lateral confinement. second width volume. relationships converted survival functions estimate exceedance probability probability. implemented computer called Probabilistic Runout Estimator—Rock Avalanche (PRE-RA), can be spatial impact ranges avalanche runout. An application this tool demonstrated two recent avalanches, dataset statistical relationships.

参考文章(34)
W.H. MATHEWS, K.C. McTAGGART, Chapter 7 - Hope Rockslides, British Columbia, Canada Developments in Geotechnical Engineering. ,vol. 14, pp. 259- 275 ,(1978) , 10.1016/B978-0-444-41507-3.50015-5
Julia P. Griswold, Richard M. Iverson, Mobility statistics and automated hazard mapping for debris flows and rock avalanches Scientific Investigations Report. ,(2008) , 10.3133/SIR20075276
N. Boultbee, D. Stead, J. Schwab, M. Geertsema, The Zymoetz River rock avalanche, June 2002, British Columbia, Canada Engineering Geology. ,vol. 83, pp. 76- 93 ,(2006) , 10.1016/J.ENGGEO.2005.06.038
Oldrich Hungr, Scott McDougall, Two numerical models for landslide dynamic analysis Computers & Geosciences. ,vol. 35, pp. 978- 992 ,(2009) , 10.1016/J.CAGEO.2007.12.003
P. Horton, M. Jaboyedoff, B. Rudaz, M. Zimmermann, Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale Natural Hazards and Earth System Sciences. ,vol. 13, pp. 869- 885 ,(2013) , 10.5194/NHESS-13-869-2013
John F. Orwin, John J. Clague, Robert F. Gerath, The Cheam rock avalanche, Fraser Valley, British Columbia, Canada Landslides. ,vol. 1, pp. 289- 298 ,(2004) , 10.1007/S10346-004-0036-Y
Adrian E. Scheidegger, On the prediction of the reach and velocity of catastrophic landslides Rock Mechanics Felsmechanik M�canique des Roches. ,vol. 5, pp. 231- 236 ,(1973) , 10.1007/BF01301796
PIER GIORGIO NICOLETTI, MARINO SORRISO-VALVO, Geomorphic controls of the shape and mobility of rock avalanches Geological Society of America Bulletin. ,vol. 103, pp. 1365- 1373 ,(1991) , 10.1130/0016-7606(1991)103<1365:GCOTSA>2.3.CO;2
François Legros, The mobility of long-runout landslides Engineering Geology. ,vol. 63, pp. 301- 331 ,(2002) , 10.1016/S0013-7952(01)00090-4
Alessandro Simoni, Maria Mammoliti, Matteo Berti, Uncertainty of debris flow mobility relationships and its influence on the prediction of inundated areas Geomorphology. ,vol. 132, pp. 249- 259 ,(2011) , 10.1016/J.GEOMORPH.2011.05.013