Modeling inverse covariance matrices by basis expansion

作者: Peder A. Olsen , Ramesh A. Gopinath

DOI: 10.1109/ICASSP.2002.5743949

关键词:

摘要: This paper proposes a new covariance modeling technique for Gaussian Mixture Models. Specifically the inverse (precision) matrix of each is expanded in rank-1 basis i.e., Σ j −1 = P k 1 D λ ja T, ∈ ℝd. A generalized EM algorithm proposed to obtain maximum likelihood parameter estimates set {a T} and expansion coefficients {λ j}. model, called Extended Maximum Likelihood Linear Transform (EMLLT) extremely flexible: by varying number elements from d d(d + 1)/2 one gradually moves (MLLT) model full-covariance model. Experimental results on two speech recognition tasks show that EMLLT can give relative gains up 35% word error rate over standard diagonal

参考文章(6)
N.K. Goel, R.A. Gopinath, Multiple linear transforms international conference on acoustics, speech, and signal processing. ,vol. 1, pp. 481- 484 ,(2001) , 10.1109/ICASSP.2001.940872
L. Liporace, Maximum likelihood estimation for multivariate observations of Markov sources IEEE Transactions on Information Theory. ,vol. 28, pp. 729- 734 ,(1982) , 10.1109/TIT.1982.1056544
A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum Likelihood from Incomplete Data Via theEMAlgorithm Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 39, pp. 1- 22 ,(1977) , 10.1111/J.2517-6161.1977.TB01600.X
M.J.F. Gales, Semi-tied covariance matrices for hidden Markov models IEEE Transactions on Speech and Audio Processing. ,vol. 7, pp. 272- 281 ,(1999) , 10.1109/89.759034
R.A. Gopinath, Maximum likelihood modeling with Gaussian distributions for classification international conference on acoustics speech and signal processing. ,vol. 2, pp. 661- 664 ,(1998) , 10.1109/ICASSP.1998.675351
Mark J. F. Gales, Factored Semi-Tied Covariance Matrices neural information processing systems. pp. 779- 785 ,(2000)