Representations of Quivers over F1

作者: Matthew Szczesny

DOI:

关键词:

摘要: We define and study the category $\RepQ$ of representations a quiver in $\VFun$ - vector spaces "over $\Fun$". is an $\Fun$-linear possessing kernels, co-kernels, direct sums. Moreover, satisfies analogues Jordan-H\"older Krull-Schmidt theorems. are thus able to Hall algebra $\HQ$ $\RepQ$, which behaves some ways like specialization at $q=1$ $\on{Rep}(\Q, \mathbf{F}_q)$. prove existence Hopf homomorphism $ \rho': \U(\n_+) \rightarrow \HQ$, from enveloping nilpotent part $\n_+$ Kac-Moody with Dynkin diagram $\bar{\Q}$ underlying unoriented graph $\Q$. $\rho'$ when $\Q$ Jordan quiver, type $A$, cyclic tree respectively.

参考文章(18)
Nikolai Durov, New Approach to Arakelov Geometry arXiv: Algebraic Geometry. ,(2007)
Alain Connes, Caterina Consani, On the notion of geometry over Journal of Algebraic Geometry. ,vol. 20, pp. 525- 557 ,(2010) , 10.1090/S1056-3911-2010-00535-8
Victor G. Kac, Infinite-Dimensional Lie Algebras idla. pp. 422- ,(1990) , 10.1017/CBO9780511626234
Olivier Shiffmann, LECTURES ON HALL ALGEBRAS arXiv: Representation Theory. pp. 130- ,(2008)
Caterina Consani, Alain Connes, On the notion of geometry over $\F_1$ arXiv: Algebraic Geometry. ,(2008)
James A. Green, Hall algebras, hereditary algebras and quantum groups. Inventiones Mathematicae. ,vol. 120, pp. 361- 377 ,(1995) , 10.1007/BF01241133
Claus Michael Ringel, Hall algebras and quantum groups Inventiones Mathematicae. ,vol. 101, pp. 583- 591 ,(1990) , 10.1007/BF01231516
Anton Deitmar, F1-schemes and toric varieties arXiv: Number Theory. ,(2006)
Olivier Schiffmann, Spherical Hall algebras of curves and Harder-Narasimhan stratas arXiv: Quantum Algebra. ,(2010)