Higher-Dimensional Algebra VII: Groupoidification

作者: Alexander E. Hoffnung , John C. Baez , Christopher D. Walker

DOI:

关键词:

摘要: Groupoidification is a form of categorification in which vector spaces are replaced by groupoids, and linear operators spans groupoids. We introduce this idea with detailed exposition "degroupoidification": systematic process that turns groupoids into operators. Then we present three applications groupoidification. The first to Feynman diagrams. Hilbert space for the quantum harmonic oscillator arises naturally from degroupoidifying groupoid finite sets bijections. This allows purely combinatorial interpretation creation annihilation operators, their commutation relations, field normal-ordered powers, finally second application Hecke algebras. explain how groupoidify algebra associated Dynkin diagram whenever deformation parameter q prime power. illustrate simplest nontrivial example, coming A2 diagram. In example show solution Yang-Baxter equation built axioms projective geometry applied plane over elements. third Hall standard construction category representations simply-laced quiver can be seen as an degroupoidification. turn provides new way categorify - or more precisely, positive part group quiver.

参考文章(30)
Paul Garrett, Buildings and Classical Groups online + Chapman-Hall. ,(1997) , 10.1007/978-94-011-5340-9
Armand Borel, Linear algebraic groups ,(1991)
Paul G. Goerss, John F. Jardine, Simplicial homotopy theory The Mathematical Gazette. ,vol. 84, pp. 360- ,(1999) , 10.1007/978-3-0346-0189-4
Matthew Szczesny, Representations of Quivers over F1 arXiv: Quantum Algebra. ,(2010)
Olivier Shiffmann, LECTURES ON HALL ALGEBRAS arXiv: Representation Theory. pp. 130- ,(2008)
Raphael Rouquier, 2-Kac-Moody algebras arXiv: Representation Theory. ,(2008)
The combinatorics of Harish-Chandra bimodules. Crelle's Journal. ,vol. 1992, pp. 49- 74 ,(1992) , 10.1515/CRLL.1992.429.49
John C. Baez, James Dolan, From Finite Sets to Feynman Diagrams arXiv: Quantum Algebra. pp. 29- 50 ,(2001) , 10.1007/978-3-642-56478-9_3
Kai A. Behrend, The Lefschetz trace formula for algebraic stacks Inventiones Mathematicae. ,vol. 112, pp. 127- 149 ,(1993) , 10.1007/BF01232427
David Kazhdan, George Lusztig, Representations of Coxeter Groups and Hecke Algebras. Inventiones Mathematicae. ,vol. 53, pp. 165- 184 ,(1979) , 10.1007/BF01390031