Balanced a posteriori error estimates for finite-volume type discretizations of convection-dominated elliptic problems

作者: L. Angermann

DOI: 10.1007/BF02238485

关键词:

摘要: The paper describes computable local a posteriori error estimates for the numerical solution of convection-dominated boundary-value problems. Being applied to singularly perturbed elliptic equations, obtained are uniform w.r.t. small parameter. Moreover, if quadrature errors neglected approximation theoretical bounds preserves relation signs in estimates.

参考文章(7)
Neil S Trudinger, David G Gilbarg, Elliptic Partial Differential Equations of Second Order ,(2018)
LUTZ ANGERMANN, Error estimates for the finite-element solution of an elliptic singularly perturbed problem Ima Journal of Numerical Analysis. ,vol. 15, pp. 161- 196 ,(1995) , 10.1093/IMANUM/15.2.161
I. Babuvška, W. C. Rheinboldt, Error Estimates for Adaptive Finite Element Computations SIAM Journal on Numerical Analysis. ,vol. 15, pp. 736- 754 ,(1978) , 10.1137/0715049
LUTZ ANGERMANN, An a posteriori estimation for the solution of elliptic boundary value problems by means of upwind FEM Ima Journal of Numerical Analysis. ,vol. 12, pp. 201- 215 ,(1992) , 10.1093/IMANUM/12.2.201
Mark Ainsworth, J. Tinsley Oden, A posteriori error estimators for second order elliptic systems: Part 1. Theoretical foundations and a posteriori error analysis Computers & Mathematics With Applications. ,vol. 25, pp. 101- 113 ,(1993) , 10.1016/0898-1221(93)90227-M
Kenneth Eriksson, Claes Johnson, Adaptive streamline diffusion finite element methods for stationary convection-diffusion problems Mathematics of Computation. ,vol. 60, pp. 167- 18812 ,(1993) , 10.1090/S0025-5718-1993-1149289-9
Mark Ainsworth, J. Tinsley Oden, A unified approach to a posteriori error estimation using element residual methods Numerische Mathematik. ,vol. 65, pp. 23- 50 ,(1993) , 10.1007/BF01385738