A numerical study of a posteriori error estimators for convection–diffusion equations

作者: Volker John

DOI: 10.1016/S0045-7825(99)00440-5

关键词:

摘要: Abstract This paper presents a numerical study of posteriori error estimators for convection–diffusion equations. The involves the gradient indicator, an estimator which is based on recovery, three residual-based different norms, and two are defined by solutions local Neumann problems. They compared with respect to reliable estimation global accuracy computed adaptively refined grids. shows both criteria comparison that none considered works satisfactorily in all tests.

参考文章(17)
Hans-Görg Roos, Martin Stynes, Lutz Tobiska, Numerical Methods for Singularly Perturbed Differential Equations Springer Series in Computational Mathematics. ,(1996) , 10.1007/978-3-662-03206-0
I. Babuvška, W. C. Rheinboldt, Error Estimates for Adaptive Finite Element Computations SIAM Journal on Numerical Analysis. ,vol. 15, pp. 736- 754 ,(1978) , 10.1137/0715049
R. E. Bank, A. Weiser, Some a posteriori error estimators for elliptic partial differential equations Mathematics of Computation. ,vol. 44, pp. 283- 301 ,(1985) , 10.1090/S0025-5718-1985-0777265-X
J.Tinsley Oden, Mark Ainsworth, A Posteriori Error Estimation in Finite Element Analysis ,(2000)
P.G. Ciarlet, Basic error estimates for elliptic problems Handbook of Numerical Analysis. ,vol. 2, pp. 17- 351 ,(1991) , 10.1016/S1570-8659(05)80039-0
Mark Ainsworth, J. Tinsley Oden, A unified approach to a posteriori error estimation using element residual methods Numerische Mathematik. ,vol. 65, pp. 23- 50 ,(1993) , 10.1007/BF01385738