A high resolution map of soil types and physical properties for Cyprus: A digital soil mapping optimization

作者: Corrado Camera , Zomenia Zomeni , Jay S. Noller , Andreas M. Zissimos , Irene C. Christoforou

DOI: 10.1016/J.GEODERMA.2016.09.019

关键词:

摘要: Fine-resolution soil maps constitute important data for many different environmental studies. Digital mapping techniques represent a cost-effective method to obtain detailed information about types and properties over large areas. The main objective of the study was extend predictions from 1:25,000 legacy surveys (including WRB groups, depth texture classes) larger area Cyprus. A multiple-trees classification technique, namely Random Forest (RF), applied. Specific objectives were: (i) analyze role importance set predictors, (ii) investigate effect number training points, forest size (ntree), numbers predictors sampled per node (mtry) tree (nodesize) in RF; (iii) compare RF-derived with derived multinomial logistic regression model, terms validation error (test independent profiles) map uncertainty, using confusion index newly developed reliability index. optimized RF model run half input points available (over million) ntree equal 350. mtry parameter 5 (close variables used) both series properties. nodesize calibration showed no relevant performance increase kept at its default value (1). In variables, used 10 covering all formation factors considered scorpan formula, derive three maps. Soil properties, geochemistry data, high deriving depths texture. constructed better predictive than regression, showing comparable uncertainty but much lower error. show very low out bag (OOB) errors (around 10% groups properties) relatively profiles (45% depth, 51% texture). resulting mountainous Cyprus, where were extrapolations as indicated by multivariate similarity surface, medium agricultural areas country.

参考文章(51)
David Neil Bird, Sihem Benabdallah, Nadine Gouda, Franz Hummel, Judith Koeberl, Isabelle La Jeunesse, Swen Meyer, Franz Prettenthaler, Antonino Soddu, Susanne Woess-Gallasch, Modelling climate change impacts on and adaptation strategies for agriculture in Sardinia and Tunisia using AquaCrop and value-at-risk Science of The Total Environment. ,vol. 543, pp. 1019- 1027 ,(2016) , 10.1016/J.SCITOTENV.2015.07.035
Vince Láng, Márta Fuchs, Tamás Szegi, Ádám Csorba, Erika Michéli, Deriving World Reference Base Reference Soil Groups from the prospective Global Soil Map product — A case study on major soil types of Africa Geoderma. ,vol. 263, pp. 226- 233 ,(2016) , 10.1016/J.GEODERMA.2015.07.005
Budiman Minasny, Alex.B. McBratney, Digital soil mapping: A brief history and some lessons Geoderma. ,vol. 264, pp. 301- 311 ,(2016) , 10.1016/J.GEODERMA.2015.07.017
Ramón Díaz-Uriarte, Sara Alvarez de Andrés, Gene selection and classification of microarray data using random forest BMC Bioinformatics. ,vol. 7, pp. 3- 3 ,(2006) , 10.1186/1471-2105-7-3
Max Kuhn, Building Predictive Models in R Using the caret Package Journal of Statistical Software. ,vol. 28, pp. 1- 26 ,(2008) , 10.18637/JSS.V028.I05
Carolin Strobl, Anne-Laure Boulesteix, Achim Zeileis, Torsten Hothorn, Bias in random forest variable importance measures: Illustrations, sources and a solution BMC Bioinformatics. ,vol. 8, pp. 25- 25 ,(2007) , 10.1186/1471-2105-8-25
Andreas M. Zissimos, Irene C. Christoforou, Eleni Morisseau, David R. Cohen, Neil F. Rutherford, Distribution of water-soluble inorganic ions in the soils of Cyprus Journal of Geochemical Exploration. ,vol. 146, pp. 1- 8 ,(2014) , 10.1016/J.GEXPLO.2014.07.004
David R. Cohen, Neil F. Rutherford, Eleni Morisseau, Andreas M. Zissimos, Geochemical patterns in the soils of Cyprus. Science of The Total Environment. ,vol. 420, pp. 250- 262 ,(2012) , 10.1016/J.SCITOTENV.2012.01.036
P PANAGOS, M VANLIEDEKERKE, L MONTANARELLA, R JONES, Software, Data and Modelling News: Soil organic carbon content indicators and web mapping applications Environmental Modelling and Software. ,vol. 23, pp. 1207- 1209 ,(2008) , 10.1016/J.ENVSOFT.2008.02.010