Semi-supervised methods to predict patient survival from gene expression data.

作者: Eric Bair , Robert Tibshirani , None

DOI: 10.1371/JOURNAL.PBIO.0020108

关键词:

摘要: An important goal of DNA microarray research is to develop tools diagnose cancer more accurately based on the genetic profile a tumor. There are several existing techniques in literature for performing this type diagnosis. Unfortunately, most these assume that different subtypes already known exist. Their utility limited when such have not been previously identified. Although methods identifying exist, do work well all datasets. It would be desirable procedure find applicable wide variety circumstances. Even if no information about possible certain form cancer, clinical patients, as their survival time, often available. In study, we some procedures utilize both gene expression data and identify use knowledge future patients. These were successfully applied publicly available We present diagnostic predict patients times previous This has potential powerful tool diagnosing treating cancer.

参考文章(38)
Julie Marie Vose, Current approaches to the management of non-Hodgkin's lymphoma. Seminars in Oncology. ,vol. 25, pp. 483- 491 ,(1998)
Robert Tibshirani, Virginia Goss Tusher, Gilbert Chu, Significance analysis of microarrays ,(2001)
Rebecca A. Betensky, Andreas Von Deimling, J. Gregory Cairncross, Catherine L. Nutt, Todd R. Golub, Todd R. Golub, Ute Pohl, Peter M. Black, David N. Louis, Scott L. Pomeroy, Tracy T. Batchelor, Christine Ladd, Margaret E. McLaughlin, Pablo Tamayo, D. R. Mani, Christian Hartmann, Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Research. ,vol. 63, pp. 1602- 1607 ,(2003)
James Franklin, The elements of statistical learning : data mining, inference,and prediction The Mathematical Intelligencer. ,vol. 27, pp. 83- 85 ,(2005) , 10.1007/BF02985802
Trevor Hastie, Robert Tibshirani, David Botstein, Patrick Brown, Supervised harvesting of expression trees Genome Biology. ,vol. 2, pp. 1- 12 ,(2001) , 10.1186/GB-2001-2-1-RESEARCH0003
Javed Khan, Jun S Wei, Markus Ringner, Lao H Saal, Marc Ladanyi, Frank Westermann, Frank Berthold, Manfred Schwab, Cristina R Antonescu, Carsten Peterson, Paul S Meltzer, None, Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks Nature Medicine. ,vol. 7, pp. 673- 679 ,(2001) , 10.1038/89044
Fred A Wright, William J Lemon, Wei D Zhao, Russell Sears, Degen Zhuo, Jian-Ping Wang, Hee-Yung Yang, Troy Baer, Don Stredney, Joe Spitzner, Al Stutz, Ralf Krahe, Bo Yuan, A draft annotation and overview of the human genome Genome Biology. ,vol. 2, pp. 1- 18 ,(2001) , 10.1186/GB-2001-2-7-RESEARCH0025
Robert Tibshirani, Trevor Hastie, Balasubramanian Narasimhan, Gilbert Chu, Class Prediction by Nearest Shrunken Centroids, with Applications to DNA Microarrays Statistical Science. ,vol. 18, pp. 104- 117 ,(2003) , 10.1214/SS/1056397488
Andreas Rosenwald, George Wright, Wing C. Chan, Joseph M. Connors, Elias Campo, Richard I. Fisher, Randy D. Gascoyne, H. Konrad Muller-Hermelink, Erlend B. Smeland, Jena M. Giltnane, Elaine M. Hurt, Hong Zhao, Lauren Averett, Liming Yang, Wyndham H. Wilson, Elaine S. Jaffe, Richard Simon, Richard D. Klausner, John Powell, Patricia L. Duffey, Dan L. Longo, Timothy C. Greiner, Dennis D. Weisenburger, Warren G. Sanger, Bhavana J. Dave, James C. Lynch, Julie Vose, James O. Armitage, Emilio Montserrat, Armando López-Guillermo, Thomas M. Grogan, Thomas P. Miller, Michel LeBlanc, German Ott, Stein Kvaloy, Jan Delabie, Harald Holte, Peter Krajci, Trond Stokke, Louis M. Staudt, The Use of Molecular Profiling to Predict Survival after Chemotherapy for Diffuse Large-B-Cell Lymphoma The New England Journal of Medicine. ,vol. 346, pp. 1937- 1947 ,(2002) , 10.1056/NEJMOA012914
Lars Bullinger, Konstanze Döhner, Eric Bair, Stefan Fröhling, Richard F. Schlenk, Robert Tibshirani, Hartmut Döhner, Jonathan R. Pollack, Use of Gene-Expression Profiling to Identify Prognostic Subclasses in Adult Acute Myeloid Leukemia New England Journal of Medicine. ,vol. 350, pp. 1605- 1616 ,(2004) , 10.1056/NEJMOA031046