Dose individualization can minimize nephrotoxicity due to carboplatin therapy in patients with ovarian cancer.

作者: Carlo Donadio , Annalisa Lucchesi , Michela Ardini , Stefania Cosio , Antonio Fanucchi

DOI: 10.1097/FTD.0B013E3181947812

关键词:

摘要: Carboplatin (Carbo-Pt), an alkylating agent cleared from the plasma through glomerular filtration, is commonly used for treatment of ovarian cancer. When administered at high dosage or to patients with reduced renal function, Carbo-Pt may be nephrotoxic. The dose calculated Calvert formula, using value 24-hour creatinine clearance (24h Ccr) as estimate filtration rate (GFR). aim this study was evaluate possibility individualizing alternative method GFR, based on body composition analysis, and then assess nephrotoxicity therapy individualized new method. First, we evaluated agreement between GFR (renal diethylene triamine pentaacetic acid ( 99m Tc-DTPA)), 24h Ccr, BCM GFR) basis individual values cell mass (BCM) creatinine. gave a better than Ccr. Then, combination chemotherapy (AUC 5-6 ) in 23 affected by adjusted residual function patients, GFR. No case acute failure observed regimen. Urinary excretion proteins (albumin, p2-microglobulin, retinol-binding protein) tubular enzymes, measured markers damage, increased significantly transiently only first days after chemotherapy, whereas no evidence chronic nephrotoxic effect documented. Dose individualization, minimize due therapy.

参考文章(19)
Donald W. Cockcroft, Henry Gault, Prediction of Creatinine Clearance from Serum Creatinine Nephron. ,vol. 16, pp. 31- 41 ,(1976) , 10.1159/000180580
Hiroaki Okamoto, Akira Nagatomo, Hideo Kunitoh, Hiroshi Kunikane, Koshiro Watanabe, Prediction of carboplatin clearance calculated by patient characteristics or 24-hour creatinine clearance: a comparison of the performance of three formulae Cancer Chemotherapy and Pharmacology. ,vol. 42, pp. 307- 312 ,(1998) , 10.1007/S002800050822
Carlo Donadio, Annalisa Lucchesi, Gianfranco Tramonti, Claudio Bianchi, Creatinine clearance can be predicted from plasma creatinine and body composition analysis by means of electrical bioimpedance. Renal Failure. ,vol. 20, pp. 285- 293 ,(1998) , 10.3109/08860229809045113
R.G. Price, Urinary enzymes, nephrotoxicity and renal disease. Toxicology. ,vol. 23, pp. 99- 134 ,(1982) , 10.1016/0300-483X(82)90092-0
C. Bianchi, C. Donadio, G. Tramonti, Noninvasive methods for the measurement of total renal function. Nephron. ,vol. 28, pp. 53- 57 ,(1981) , 10.1159/000182104
Ovadia Shemesh, Helen Golbetz, Joseph P. Kriss, Bryan D. Myers, Limitations of creatinine as a filtration marker in glomerulopathic patients Kidney International. ,vol. 28, pp. 830- 838 ,(1985) , 10.1038/KI.1985.205
B. Olier, G. Viotte, J.P. Morin, J.P. Fillastre, Influence of dosage regimen on experimental tobramycin nephrotoxicity. A biochemical approach. Chemotherapy. ,vol. 29, pp. 385- 394 ,(1983) , 10.1159/000238225
R Gabriel, Time to scrap creatinine clearance BMJ. ,vol. 293, pp. 1568- 1568 ,(1986) , 10.1136/BMJ.293.6555.1119
Y.F. LI, S. FU, W. HU, J.H. LIU, K.W. FINKEL, D.M. GERSHENSON, J.J. KAVANAGH, Systemic anticancer therapy in gynecological cancer patients with renal dysfunction International Journal of Gynecological Cancer. ,vol. 17, pp. 739- 763 ,(2007) , 10.1111/J.1525-1438.2007.00847.X
H. C. Lukaski, W. W. Bolonchuk, C. B. Hall, W. A. Siders, Validation of tetrapolar bioelectrical impedance method to assess human body composition. Journal of Applied Physiology. ,vol. 60, pp. 1327- 1332 ,(1986) , 10.1152/JAPPL.1986.60.4.1327