Flow Cytometric Analysis of Myeloid Cells in Human Blood, Bronchoalveolar Lavage, and Lung Tissues.

作者: Yen-Rei A. Yu , Danielle F. Hotten , Yuryi Malakhau , Ellen Volker , Andrew J. Ghio

DOI: 10.1165/RCMB.2015-0146OC

关键词:

摘要: Clear identification of specific cell populations by flow cytometry is important to understand functional roles. A well-defined panel for myeloid cells in human bronchoalveolar lavage (BAL) and lung tissue currently lacking. The objective this study was develop a cytometry-based BAL tissue. We obtained performed cytometry/sorting on Confocal images were from using antibodies cluster differentiation (CD)206, CD169, E cadherin. defined multicolor that identifies major leukocyte populations. These include macrophage (CD206(+)) subsets other CD206(-) leukocytes. include: (1) three monocyte (CD14(+)) subsets, (2) CD11c(+) dendritic (CD14(-), CD11c(+), HLA-DR(+)), (3) plasmacytoid CD11c(-), HLA-DR(+), CD123(+)), (4) granulocytes (neutrophils, mast cells, eosinophils, basophils). Using tissue, we two pulmonary macrophages: CD169(+) CD169(-) macrophages. In macrophages prominent type. confocal microscopy, located the alveolar space/airway, defining them as contrast, associated with airway/alveolar epithelium, consistent interstitial-associated allows multiple immune types delineates This has implications samples.

参考文章(38)
Holden T Maecker, J Philip McCoy Jr, None, A model for harmonizing flow cytometry in clinical trials Nature Immunology. ,vol. 11, pp. 975- 978 ,(2010) , 10.1038/NI1110-975
Stephen C. De Rosa, Leonard A. Herzenberg, Leonore A. Herzenberg, Mario Roederer, 11-color, 13-parameter flow cytometry: Identification of human naive T cells by phenotype, function, and T-cell receptor diversity Nature Medicine. ,vol. 7, pp. 245- 248 ,(2001) , 10.1038/84701
Ankit Bharat, Sangeeta M. Bhorade, Luisa Morales-Nebreda, Alexandra C. McQuattie-Pimentel, Saul Soberanes, Karen Ridge, Malcolm M. DeCamp, Karen K. Mestan, Harris Perlman, G. R. Scott Budinger, Alexander V. Misharin, Flow Cytometry Reveals Similarities Between Lung Macrophages in Humans and Mice American Journal of Respiratory Cell and Molecular Biology. ,vol. 54, pp. 147- 149 ,(2016) , 10.1165/RCMB.2015-0147LE
Holden T. Maecker, J. Philip McCoy, Robert Nussenblatt, Standardizing immunophenotyping for the Human Immunology Project Nature Reviews Immunology. ,vol. 12, pp. 191- 200 ,(2012) , 10.1038/NRI3158
J Balhara, A S Gounni, The alveolar macrophages in asthma: a double-edged sword Mucosal Immunology. ,vol. 5, pp. 605- 609 ,(2012) , 10.1038/MI.2012.74
Bruce C. Trapnell, Jeffrey A. Whitsett, Koh Nakata, Pulmonary Alveolar Proteinosis The New England Journal of Medicine. ,vol. 349, pp. 2527- 2539 ,(2003) , 10.1056/NEJMRA023226
Peter J. Murray, Thomas A. Wynn, Protective and pathogenic functions of macrophage subsets Nature Reviews Immunology. ,vol. 11, pp. 723- 737 ,(2011) , 10.1038/NRI3073
Roger Hällgren, Leif Bjermer, Rune Lundgren, Per Venge, The eosinophil component of the alveolitis in idiopathic pulmonary fibrosis. Signs of eosinophil activation in the lung are related to impaired lung function. The American review of respiratory disease. ,vol. 139, pp. 373- 377 ,(1989) , 10.1164/AJRCCM/139.2.373
Kristin Westphalen, Galina A. Gusarova, Mohammad N. Islam, Manikandan Subramanian, Taylor S. Cohen, Alice S. Prince, Jahar Bhattacharya, Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity Nature. ,vol. 506, pp. 503- 506 ,(2014) , 10.1038/NATURE12902
Manfred Kopf, Christoph Schneider, Samuel P Nobs, The development and function of lung-resident macrophages and dendritic cells Nature Immunology. ,vol. 16, pp. 36- 44 ,(2015) , 10.1038/NI.3052