Correct Equilibrium Shape Equation of Axisymmetric Vesicles

作者: N.K. Vaidya , H. Huang , S. Takagi

DOI: 10.1007/978-0-8176-4671-4_30

关键词:

摘要: Under favorable conditions, lipid molecules consisting hydrophobic tail and hydrophilic head groups, self assemble to form vesicles in aqueous medium with a bilayer separating the inner outer solutions [Ino96, Kom96]. Vesicles have been attracting enormous attentions because of their biological significance numerous applications such as drug delivery targeting, medical imaging, catalysis, etc. [KR96, Zan96]. It is recognized that equilibrium shape vesicle determined by minimizing energy given spontaneous-curvature model Helfrich [Hel73, OH89]:

参考文章(26)
C Pozrikidis, Shell theory for capsules and cells Chapman and Hall/CRC. ,(2003) , 10.1201/9780203503959.CH2
T. Willmore, Total curvature in Riemannian geometry Ellis Horwood , [Distributed by] Halsted Press. ,(1982)
Hu Jian-Guo, Ou-Yang Zhong-Can, Shape equations of the axisymmetric vesicles Physical Review E. ,vol. 47, pp. 461- 467 ,(1993) , 10.1103/PHYSREVE.47.461
Frank Jülicher, Reinhard Lipowsky, Shape transformations of vesicles with intramembrane domains Physical Review E. ,vol. 53, pp. 2670- 2683 ,(1996) , 10.1103/PHYSREVE.53.2670
M. Mutz, D. Bensimon, Observation of toroidal vesicles. Physical Review A. ,vol. 43, pp. 4525- 4527 ,(1991) , 10.1103/PHYSREVA.43.4525
Ling Miao, Bertrand Fourcade, Madan Rao, Michael Wortis, R. K. P. Zia, Equilibrium budding and vesiculation in the curvature model of fluid lipid vesicles Physical Review A. ,vol. 43, pp. 6843- 6856 ,(1991) , 10.1103/PHYSREVA.43.6843
Udo Seifert, Karin Berndl, Reinhard Lipowsky, Shape transformations of vesicles: Phase diagram for spontaneous- curvature and bilayer-coupling models. Physical Review A. ,vol. 44, pp. 1182- 1202 ,(1991) , 10.1103/PHYSREVA.44.1182