The formal series Witt transform

作者: Pieter Moree

DOI: 10.1016/J.DISC.2005.03.004

关键词:

摘要: Given a formal power series f(z)@[email protected][email protected]? we define, for any positive integer r, its rth Witt transform, W"f^(^r^), by W"f^(^r^)(z)[email protected]?"d"|"[email protected](d)f(z^d)^r^/^d, where @m denotes the Mobius function. The transform generalizes necklace polynomials, M(@a;n), that occur in cyclotomic [email protected][email protected]?n=1~(1-y^n)^-^M^(^@a^;^n^).Several properties of W"f^(^r^) are established. Some examples relevant to number theory considered.

参考文章(24)
A. Elashvili, M. Jibladze, D. Pataraia, Combinatorics of Necklaces and “Hermite Reciprocity” Journal of Algebraic Combinatorics. ,vol. 10, pp. 173- 188 ,(1999) , 10.1023/A:1018727630642
Gérard Viennot, Algèbres de Lie Libres et Monoïdes Libres Springer Berlin Heidelberg. ,(1978) , 10.1007/BFB0067950
Ernst Witt, Treue Darstellung Liescher Ringe. Crelle's Journal. ,vol. 177, pp. 152- 160 ,(1937)
Christophe Reutenauer, Free Lie Algebras ,(1993)
M. Lothaire, Combinatorics on Words ,(1984)
Alex J. Feingold, Matthias Beck, Michael D. Weiner, Arithmetic partition sums and orbits of Z_n^k under the symmetric group S_k arXiv: Number Theory. ,(2001)
Yash Puri, Thomas Ward, Arithmetic and growth of periodic orbits Journal of integer sequences, 2001, Vol.4 [Peer Reviewed Journal]. ,vol. 4, pp. 21- ,(2001)
Seok-Jin Kang, Myung-Hwan Kim, Dimension formula for graded Lie algebras and its applications Transactions of the American Mathematical Society. ,vol. 351, pp. 4281- 4336 ,(1999) , 10.1090/S0002-9947-99-02239-4
Pieter Moree, Approximation of singular series and automata Manuscripta Mathematica. ,vol. 103, pp. 385- 400 ,(2000) , 10.1007/S002290050222
Ira M Gessel, Christophe Reutenauer, Counting permutations with given cycle structure and descent set Journal of Combinatorial Theory, Series A. ,vol. 64, pp. 189- 215 ,(1993) , 10.1016/0097-3165(93)90095-P