On the distribution of the order over residue classes

作者: Pieter Moree

DOI: 10.1090/S1079-6762-06-00168-5

关键词:

摘要: For a fixed rational number g ∈ {−1, 0, 1} and integers d we consider the set Ng(a, d) of primes p such that order modulo is congruent to (mod d). Under Generalized Riemann Hypothesis (GRH), it can be shown has natural density δg(a, Arithmetical properties are described, compared with δ(a, d): average elements in field prime characteristic having It transpires strong tendency equal d), or at least close it.

参考文章(8)
Christopher Hooley, On Artin's conjecture. Crelle's Journal. ,vol. 225, pp. 209- 220 ,(1967)
K. Wiertelak, On the density of some sets of primes III Studies in Pure Mathematics. ,vol. 34, pp. 761- 773 ,(1983) , 10.1007/978-3-0348-5438-2_67
Koji Chinen, Leo Murata, On a distribution property of the residual order of a (mod p)—II Journal of Number Theory. ,vol. 105, pp. 82- 100 ,(2004) , 10.1016/J.JNT.2003.06.005
Pieter Moree, The formal series Witt transform Discrete Mathematics. ,vol. 295, pp. 143- 160 ,(2005) , 10.1016/J.DISC.2005.03.004
Pieter Moree, On the distribution of the order and index of g(modp) over residue classes II Journal of Number Theory. ,vol. 117, pp. 132- 160 ,(2006) , 10.1016/J.JNT.2005.06.006
Pieter Moree, On the average number of elements in a finite field with order or index in a prescribed residue class Finite Fields and Their Applications. ,vol. 10, pp. 438- 463 ,(2004) , 10.1016/J.FFA.2003.10.001
Pieter Moree, Convoluted convolved Fibonacci numbers Journal of Integer Sequences. ,vol. 7, pp. 22- ,(2004)
Kazimierz Wiertelak, On the density of some sets of primes $p$, for which $n\mid{\rm ord}_pa$ Functiones et Approximatio Commentarii Mathematici. ,vol. 28, pp. 237- 241 ,(2000) , 10.7169/FACM/1538186700