New feature subset selection procedures for classification of expression profiles

作者: Trond Bø , Inge Jonassen

DOI: 10.1186/GB-2002-3-4-RESEARCH0017

关键词:

摘要: Background Methods for extracting useful information from the datasets produced by microarray experiments are at present of much interest. Here we new methods finding gene sets that well suited distinguishing experiment classes, such as healthy versus diseased tissues. Our based on evaluating genes in pairs and how a pair combination distinguishes two classes. We tested ability our pair-based to select generalize differences between classes compared performance relative standard methods. To assess class differences, studied learning classifier.

参考文章(15)
Eric P. Xing, Richard M. Karp, Michael I. Jordan, Feature selection for high-dimensional genomic microarray data international conference on machine learning. pp. 601- 608 ,(2001)
Javed Khan, Jun S Wei, Markus Ringner, Lao H Saal, Marc Ladanyi, Frank Westermann, Frank Berthold, Manfred Schwab, Cristina R Antonescu, Carsten Peterson, Paul S Meltzer, None, Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks Nature Medicine. ,vol. 7, pp. 673- 679 ,(2001) , 10.1038/89044
Sandrine Dudoit, Jane Fridlyand, Terence P Speed, None, Comparison of discrimination methods for the classification of tumors using gene expression data Journal of the American Statistical Association. ,vol. 97, pp. 77- 87 ,(2002) , 10.1198/016214502753479248
Ron Kohavi, George H. John, Wrappers for feature subset selection Artificial Intelligence. ,vol. 97, pp. 273- 324 ,(1997) , 10.1016/S0004-3702(97)00043-X
U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, A. J. Levine, Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays Proceedings of the National Academy of Sciences of the United States of America. ,vol. 96, pp. 6745- 6750 ,(1999) , 10.1073/PNAS.96.12.6745
Tomaso Poggio, Vladimir Vapnik, Olivier Chapelle, Jason Weston, Sayan Mukherjee, Massimiliano Pontil, Feature Selection for SVMs neural information processing systems. ,vol. 13, pp. 668- 674 ,(2000)
Momiao Xiong, Li Jin, Wuju Li, Eric Boerwinkle, Computational Methods for Gene Expression-Based Tumor Classification BioTechniques. ,vol. 29, pp. 1264- 1270 ,(2000) , 10.2144/00296BC02
T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, E. S. Lander, Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. ,vol. 286, pp. 531- 537 ,(1999) , 10.1126/SCIENCE.286.5439.531
N. L. Hjort, Brian D. Ripley, Pattern recognition and neural networks ,(1996)
B. Dysvik, I. Jonassen, J-Express: exploring gene expression data using Java. Bioinformatics. ,vol. 17, pp. 369- 370 ,(2001) , 10.1093/BIOINFORMATICS/17.4.369