Biorthogonal Wavelet Expansions

作者: W. Dahmen , C. A. Micchelli

DOI: 10.1007/S003659900045

关键词:

摘要: This paper is concerned with developing conditions on a given finite collection of compactly supported algebraically linearly independent refinable functions that insure the existence biorthogonal systems similar properties. In particular, we address close connection this issue stationary subdivision schemes.

参考文章(20)
Tsit Yuen Lam, Serre's conjecture ,(1978)
Wolfgang Dahmen, Stability of Multiscale Transformations. The journal of Fourier analysis and applications [[Elektronische Ressource]]. ,vol. 2, pp. 341- 362 ,(1995)
J. L. Merrien, A family of Hermite interpolants by bisection algorithms Numerical Algorithms. ,vol. 2, pp. 187- 200 ,(1992) , 10.1007/BF02145385
G. Strang, V. Strela, Short wavelets and matrix dilation equations IEEE Transactions on Signal Processing. ,vol. 43, pp. 108- 115 ,(1995) , 10.1109/78.365291
Ruilin Long, Dirong Chen, Biorthogonal Wavelet Bases on Rd Applied and Computational Harmonic Analysis. ,vol. 2, pp. 230- 242 ,(1995) , 10.1006/ACHA.1995.1016
Karsten Urban, On divergence-free wavelets Advances in Computational Mathematics. ,vol. 4, pp. 51- 81 ,(1995) , 10.1007/BF02123473
Wolfgang Dahmen, Charles A. Micchelli, Continuous refinement equations and subdivision Advances in Computational Mathematics. ,vol. 1, pp. 1- 37 ,(1993) , 10.1007/BF02070819
Charles A. Micchelli, Yuesheng Xu, Using the Matrix Refinement Equation for the Construction of Wavelets on Invariant Sets Applied and Computational Harmonic Analysis. ,vol. 1, pp. 391- 401 ,(1994) , 10.1006/ACHA.1994.1024
Roland Bulirsch, Josef Stoer, Introduction To Numerical Analysis ,(1956)