Two-Way Data Analysis: Multivariate Curve Resolution – Iterative Resolution Methods

作者: A. de Juan , S.C. Rutan , R. Tauler

DOI: 10.1016/B978-044452701-1.00050-8

关键词:

摘要: This chapter describes the general modus operandi of model-free multivariate curve resolution (MCR) iterative methods, that is, recovery pure concentration profiles and responses (spectra) from optimization initial estimates under action constraints. Initially, some common concepts, such as methodologies for generation or description most constraints, are presented. The basic bilinear (CR) model is expressed in two different forms: X = CST + E X = (CoR)(R−1SoT) + E. Methods based on first equation solve C and/or ST matrices directly, whereas methods second optimize transformation matrix R a way C = CoR ST = R−1SoT chemically meaningful. Resolving factor analysis (RFA) through elementary transformations (Gentle) selected algorithms representative via described detail this chapter. direct, solution target (ITTFA) resolution-alternating least squares (MCR-ALS). Critical comments graphical examples use applicability also included.

参考文章(59)
Romà Tauler, Multivariate curve resolution ,(1998)
Peter D Wentzell, Tobias K Karakach, Sushmita Roy, M Juanita Martinez, Christopher P Allen, Margaret Werner-Washburne, Multivariate curve resolution of time course microarray data. BMC Bioinformatics. ,vol. 7, pp. 343- 343 ,(2006) , 10.1186/1471-2105-7-343
Anna de Juan, Marcel Maeder, Manuel Martı́nez, Romà Tauler, Combining hard- and soft-modelling to solve kinetic problems Chemometrics and Intelligent Laboratory Systems. ,vol. 54, pp. 123- 141 ,(2000) , 10.1016/S0169-7439(00)00112-X
William H. Lawton, Edward A. Sylvestre, Self Modeling Curve Resolution Technometrics. ,vol. 13, pp. 617- 633 ,(1971) , 10.1080/00401706.1971.10488823
Anna de Juan, Romà Tauler, Raylene Dyson, Claudia Marcolli, Marianne Rault, Marcel Maeder, Spectroscopic imaging and chemometrics: a powerful combination for global and local sample analysis Trends in Analytical Chemistry. ,vol. 23, pp. 70- 79 ,(2004) , 10.1016/S0165-9936(04)00101-3
Rasmus Bro, Nicholaos D. Sidiropoulos, Least squares algorithms under unimodality and non-negativity constraints Journal of Chemometrics. ,vol. 12, pp. 223- 247 ,(1998) , 10.1002/(SICI)1099-128X(199807/08)12:4<223::AID-CEM511>3.0.CO;2-2
Anna de Juan, Marcel Maeder, Thomas Hancewicz, Romà Tauler, Use of local rank‐based spatial information for resolution of spectroscopic images Journal of Chemometrics. ,vol. 22, pp. 291- 298 ,(2008) , 10.1002/CEM.1099
Bernard G.M. Vandeginste, Wilbert Derks, Gerrit Kateman, Multicomponent self-modelling curve resolution in high-performance liquid chromatography by iterative target transformation analysis Analytica Chimica Acta. ,vol. 173, pp. 253- 264 ,(1985) , 10.1016/S0003-2670(00)84962-4
Richard J. Hanson, Karen H. Haskell, Algorithm 587: Two Algorithms for the Linearly Constrained Least Squares Problem ACM Transactions on Mathematical Software. ,vol. 8, pp. 323- 333 ,(1982) , 10.1145/356004.356010