Lipid Exchange Envelope Penetration (LEEP) of Nanoparticles for Plant Engineering: A Universal Localization Mechanism

作者: Min Hao Wong , Rahul P. Misra , Juan P. Giraldo , Seon-Yeong Kwak , Youngwoo Son

DOI: 10.1021/ACS.NANOLETT.5B04467

关键词:

摘要: Nanoparticles offer clear advantages for both passive and active penetration into biologically important membranes. However, the uptake localization mechanism of nanoparticles within living plants, plant cells, organelles has yet to be elucidated.1 Here, we examine subcellular kinetic trapping a wide range first time, using chloroplast as model system, but validated in vivo plants. Confocal visible near-infrared fluorescent microscopy single particle tracking gold-cysteine-AF405 (GNP-Cys-AF405), streptavidin-quantum dot (SA-QD), dextran poly(acrylic acid) nanoceria, various polymer-wrapped single-walled carbon nanotubes (SWCNTs), including lipid-PEG-SWCNT, chitosan-SWCNT 30-base (dAdT) sequence ssDNA (AT)15 wrapped SWCNTs (hereafter referred ss(AT)15-SWCNT), are used demonstrate that size magnitude, not sign, zeta potential key determining whether is spontaneously kinetically trapped organelle, despite negative envelope. We develop mathematical this lipid exchange envelope (LEEP) mechanism, which agrees well with observations dependence. The theory predicts critical below fails at all potentials, explaining why process. LEEP constitutes powerful particulate transport system.

参考文章(63)
Richard Leegood, Thomas D. Sharkey, Susanne von Caemmerer, Photosynthesis : physiology and metabolism Photosynthesis: physiology and metabolism.. ,(2000)
G. A. Neil, Ulrich Zimmermann, Electromanipulation of cells ,(1996)
Govindjee, Thomas D. Sharkey, Baishnab C. Tripathy, Julian J. Eaton-Rye, Photosynthesis : plastid biology, energy conversion and carbon assimilation Springer. ,(2012)
Ardemis A. Boghossian, Fatih Sen, Brenna M. Gibbons, Selda Sen, Sean M. Faltermeier, Juan Pablo Giraldo, Cathy T. Zhang, Jingqing Zhang, Daniel A. Heller, Michael S. Strano, Application of nanoparticle antioxidants to enable hyperstable chloroplasts for solar energy harvesting Advanced Energy Materials. ,vol. 3, pp. 881- 893 ,(2013) , 10.1002/AENM.201201014
Nadine Wong Shi Kam, Theodore C. Jessop, Paul A. Wender, Hongjie Dai, Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into Mammalian cells. Journal of the American Chemical Society. ,vol. 126, pp. 6850- 6851 ,(2004) , 10.1021/JA0486059
Guang-Ning Ye, Henry Daniell, John C. Sanford, Optimization of delivery of foreign DNA into higher-plant chloroplasts. Plant Molecular Biology. ,vol. 15, pp. 809- 819 ,(1990) , 10.1007/BF00039421
Hong Jin, Daniel A. Heller, Michael S. Strano, Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells. Nano Letters. ,vol. 8, pp. 1577- 1585 ,(2008) , 10.1021/NL072969S
R. McC. LILLEY, M. P. FITZGERALD, K. G. RIENITS, D. A. WALKER, CRITERIA OF INTACTNESS AND THE PHOTOSYNTHETIC ACTIVITY OF SPINACH CHLOROPLAST PREPARATIONS New Phytologist. ,vol. 75, pp. 1- 10 ,(1975) , 10.1111/J.1469-8137.1975.TB01365.X
Sean E. Weise, Andreas P. M. Weber, Thomas D. Sharkey, Maltose is the major form of carbon exported from the chloroplast at night. Planta. ,vol. 218, pp. 474- 482 ,(2004) , 10.1007/S00425-003-1128-Y