Reaction rates for mesoscopic reaction-diffusion kinetics

作者: Stefan Hellander , Andreas Hellander , Linda Petzold

DOI: 10.1103/PHYSREVE.91.023312

关键词:

摘要: The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic kinetics in systems biology. RDME derived from assumptions about the underlying physical properties of system, and it may produce unphysical results for models where those fail. In that case, other more comprehensive are better suited, such as hard-sphere Brownian dynamics (BD). Although model its own right, not inferred any specific microscale model, proves useful attempt approximate by choice reaction rates. this paper we derive scale-dependent rates matching certain statistics solution widely used microscopic BD model: Smoluchowski with Robin boundary condition at radius two molecules. We also establish fundamental limits on range mesh resolutions which approach yields accurate show both theoretically numerical examples lower limit, dynamics. sizes below less accurate. Thus, limit determines size obtain most results.

参考文章(44)
Stefan Hellander, Andreas Hellander, Linda Petzold, Reaction-diffusion master equation in the microscopic limit. Physical Review E. ,vol. 85, pp. 042901- ,(2012) , 10.1103/PHYSREVE.85.042901
Crispin W. Gardiner, Handbook of Stochastic Methods Springer Series in Synergetics. ,(1983) , 10.1007/978-3-662-02377-8
Marc Sturrock, Andreas Hellander, Anastasios Matzavinos, Mark A. J. Chaplain, Spatial stochastic modelling of the Hes1 gene regulatory network: intrinsic noise can explain heterogeneity in embryonic stem cell differentiation. Journal of the Royal Society Interface. ,vol. 10, pp. 20120988- 20120988 ,(2013) , 10.1098/RSIF.2012.0988
Andreas Hellander, Stefan Hellander, Per Lötstedt, Coupled Mesoscopic and Microscopic Simulation of Stochastic Reaction-Diffusion Processes in Mixed Dimensions Multiscale Modeling & Simulation. ,vol. 10, pp. 585- 611 ,(2012) , 10.1137/110832148
Steven S. Andrews, Nathan J. Addy, Roger Brent, Adam P. Arkin, Detailed Simulations of Cell Biology with Smoldyn 2.1 PLOS Computational Biology. ,vol. 6, ,(2010) , 10.1371/JOURNAL.PCBI.1000705
Jeroen S. van Zon, Pieter Rein ten Wolde, Simulating biochemical networks at the particle level and in time and space: Green's function reaction dynamics. Physical Review Letters. ,vol. 94, pp. 128103- 128300 ,(2005) , 10.1103/PHYSREVLETT.94.128103
Samuel A. Isaacson, Charles S. Peskin, Incorporating Diffusion in Complex Geometries into Stochastic Chemical Kinetics Simulations SIAM Journal on Scientific Computing. ,vol. 28, pp. 47- 74 ,(2006) , 10.1137/040605060
Radek Erban, S Jonathan Chapman, Stochastic modelling of reaction-diffusion processes: algorithms for bimolecular reactions. Physical Biology. ,vol. 6, pp. 046001- ,(2009) , 10.1088/1478-3975/6/4/046001
David Fange, Johan Elf, Noise-induced Min phenotypes in E. coli. PLOS Computational Biology. ,vol. 2, pp. 637- 648 ,(2005) , 10.1371/JOURNAL.PCBI.0020080