Hybrid approaches for multiple-species stochastic reaction-diffusion models

作者: Fabian Spill , Pilar Guerrero , Tomas Alarcon , Philip K. Maini , Helen Byrne

DOI: 10.1016/J.JCP.2015.07.002

关键词:

摘要: Reaction-diffusion models are used to describe systems in fields as diverse physics, chemistry, ecology and biology. The fundamental quantities such individual entities atoms molecules, bacteria, cells or animals, which move and/or react a stochastic manner. If the number of is large, accounting for each inefficient, often partial differential equation (PDE) behaviour individuals replaced by description averaged, mean system. In some situations large certain regions small others. cases, model may be inefficient one region, PDE inaccurate another. To overcome this problem, we develop scheme couples reaction-diffusion system part domain with its field analogue, i.e. discretised model, other domain. interface between two domains occupies exactly lattice site chosen that still accurate there. way errors due flux small. Our can account multiple dynamic interfaces separating deterministic domains, coupling conserves total particles. method preserves features extinction not observable description, significantly faster simulate on computer than pure model. A novel hybrid stochastic/deterministic simulation given.Can massively speed up simulations while preserving effects.Can handle reacting species.Can moving boundaries.

参考文章(43)
Éric Brunet, Bernard Derrida, Effect of Microscopic Noise on Front Propagation Journal of Statistical Physics. ,vol. 103, pp. 269- 282 ,(2001) , 10.1023/A:1004875804376
Christian A. Yates, Mark B. Flegg, The pseudo-compartment method for coupling partial differential equation and compartment-based models of diffusion Journal of the Royal Society Interface. ,vol. 12, pp. 20150141- ,(2015) , 10.1098/RSIF.2015.0141
Kevin R. Sanft, Hans G. Othmer, Constant-complexity stochastic simulation algorithm with optimal binning Journal of Chemical Physics. ,vol. 143, pp. 074108- 074108 ,(2015) , 10.1063/1.4928635
Edward T. Gawlinski, Robert A. Gatenby, A Reaction-Diffusion Model of Cancer Invasion Cancer Research. ,vol. 56, pp. 5745- 5753 ,(1996)
Andreas Hellander, Stefan Hellander, Per Lötstedt, Coupled Mesoscopic and Microscopic Simulation of Stochastic Reaction-Diffusion Processes in Mixed Dimensions Multiscale Modeling & Simulation. ,vol. 10, pp. 585- 611 ,(2012) , 10.1137/110832148
Stefan Hellander, Andreas Hellander, Linda Petzold, Reaction rates for mesoscopic reaction-diffusion kinetics Physical Review E. ,vol. 91, pp. 023312- 023312 ,(2015) , 10.1103/PHYSREVE.91.023312
Jeroen S. van Zon, Pieter Rein ten Wolde, Simulating biochemical networks at the particle level and in time and space: Green's function reaction dynamics. Physical Review Letters. ,vol. 94, pp. 128103- 128300 ,(2005) , 10.1103/PHYSREVLETT.94.128103
Samuel A. Isaacson, Charles S. Peskin, Incorporating Diffusion in Complex Geometries into Stochastic Chemical Kinetics Simulations SIAM Journal on Scientific Computing. ,vol. 28, pp. 47- 74 ,(2006) , 10.1137/040605060
H.P. Breuer, W. Huber, F. Petruccione, Fluctuation effects on wave propagation in a reaction-diffusion process Physica D: Nonlinear Phenomena. ,vol. 73, pp. 259- 273 ,(1994) , 10.1016/0167-2789(94)90161-9