Error analysis of first-order projection method for time-dependent magnetohydrodynamics equations

作者: Rong An , Yuan Li

DOI: 10.1016/J.APNUM.2016.10.010

关键词:

摘要: Abstract This paper focuses on a linearized fully discrete projection scheme for time-dependent magnetohydrodynamics equations in three-dimensional bounded domain. It is shown that the proposed allows energy inequality and unconditionally stable. In addition, we present rigorous analysis rates of convergence.

参考文章(16)
Jean-Frédéric Gerbeau, Claude Le Bris, Tony Lelièvre, None, Mathematical Methods for the Magnetohydrodynamics of Liquid Metals ,(2006)
Yuhong Zhang, Yanren Hou, Li Shan, Numerical analysis of the Crank-Nicolson extrapolation time discrete scheme for magnetohydrodynamics flows Numerical Methods for Partial Differential Equations. ,vol. 31, pp. 2169- 2208 ,(2015) , 10.1002/NUM.21989
Dominik Sch�tzau, Mixed finite element methods for stationary incompressible magneto–hydrodynamics Numerische Mathematik. ,vol. 96, pp. 771- 800 ,(2004) , 10.1007/S00211-003-0487-4
Roger Temam, Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) Archive for Rational Mechanics and Analysis. ,vol. 33, pp. 377- 385 ,(1969) , 10.1007/BF00247696
Jie Shen, Remarks on the pressure error estimates for the projection methods Numerische Mathematik. ,vol. 67, pp. 513- 520 ,(1994) , 10.1007/S002110050042
Jim Douglas, Jun Ping Wang, An absolutely stabilized finite element method for the stokes problem Mathematics of Computation. ,vol. 52, pp. 495- 508 ,(1989) , 10.1090/S0025-5718-1989-0958871-X
Jie Shen, On error estimates of projection methods for Navier-Stokes equations: first-order schemes SIAM Journal on Numerical Analysis. ,vol. 29, pp. 57- 77 ,(1992) , 10.1137/0729004
John G. Heywood, Rolf Rannacher, Finite-Element Approximation of the Nonstationary Navier–Stokes Problem. Part IV: Error Analysis for Second-Order Time Discretization SIAM Journal on Numerical Analysis. ,vol. 27, pp. 353- 384 ,(1990) , 10.1137/0727022