Excess Length of Stay Attributable to Clostridium difficile Infection (CDI) in the Acute Care Setting: A Multistate Model.

作者: Vanessa W. Stevens , Karim Khader , Richard E. Nelson , Makoto Jones , Michael A. Rubin

DOI: 10.1017/ICE.2015.132

关键词:

摘要: BACKGROUND Standard estimates of the impact Clostridium difficile infections (CDI) on inpatient lengths stay (LOS) may overstate care costs attributable to CDI. In this study, we used multistate modeling (MSM) CDI timing reduce bias in excess LOS. METHODS A retrospective cohort study all hospitalizations at any 120 acute facilities within US Department Veterans Affairs (VA) between 2005 and 2012 was conducted. We estimated LOS using an MSM address time-dependent bias. Bootstrapping generate 95% confidence intervals (CI). These were compared unadjusted differences mean for with without RESULTS During period, there 3.96 million 43,540 CDIs. comparison means suggested 14.0 days (19.4 vs 5.4 days). contrast, only 2.27 (95% CI, 2.14–2.40). The mild-to-moderate 0.75 0.59–0.89), severe CDI, it 4.11 3.90–4.32). Substantial variation across Veteran Integrated Services Networks (VISN) observed. CONCLUSIONS significantly contributes LOS, but magnitude its is smaller when methods are that account time-varying nature infection. greatest occurred among patients Significant geographic variability a useful tool obtaining more accurate Infect. Control Hosp. Epidemiol. 2015;36(9):1024–1030

参考文章(35)
D. Commenges, Multi-state Models in Epidemiology Lifetime Data Analysis. ,vol. 5, pp. 315- 327 ,(1999) , 10.1023/A:1009636125294
Bradley Efron, Thomas J. DiCiccio, Bootstrap Confidence Intervals Statistical Science. ,vol. 11, pp. 189- 228 ,(1996) , 10.1214/SS/1032280214
Tara Lagu, Mihaela S. Stefan, Sarah Haessler, Thomas L. Higgins, Michael B. Rothberg, Brian H. Nathanson, Nicholas S. Hannon, Jay S. Steingrub, Peter K. Lindenauer, The impact of hospital-onset Clostridium Difficile infection on outcomes of hospitalized patients with sepsis Journal of Hospital Medicine. ,vol. 9, pp. 411- 417 ,(2014) , 10.1002/JHM.2199
Arthur Allignol, Martin Schumacher, Jan Beyersmann, Empirical Transition Matrix of Multi-State Models: The etm Package Journal of Statistical Software. ,vol. 38, pp. 1- 15 ,(2011) , 10.18637/JSS.V038.I04
Emma Butt, Jane AH Foster, Edward Keedwell, Julia EA Bell, Richard W Titball, Aneel Bhangu, Stephen L Michell, Ray Sheridan, Derivation and validation of a simple, accurate and robust prediction rule for risk of mortality in patients with Clostridium difficile infection. BMC Infectious Diseases. ,vol. 13, pp. 316- 316 ,(2013) , 10.1186/1471-2334-13-316
Ghinwa Dumyati, Vanessa Stevens, George E. Hannett, Angela D. Thompson, Cherie Long, Duncan MacCannell, Brandi Limbago, Community-associated Clostridium difficile infections, Monroe County, New York, USA. Emerging Infectious Diseases. ,vol. 18, pp. 392- 400 ,(2012) , 10.3201/EID1803.102023
Teresa Horan, Joan N. Hebden, Angela Anttila, Kathy Allen-Bridson, Gloria C. Morrell, Marc-Oliver Wright, Healthcare-associated infections studies project: an American Journal of Infection Control and National Healthcare Safety Network data quality collaboration-LabID Clostridium Difficile event 2013. American Journal of Infection Control. ,vol. 41, pp. 916- 917 ,(2013) , 10.1016/J.AJIC.2013.05.009
S.S. Ghantoji, K. Sail, D.R. Lairson, H.L. DuPont, K.W. Garey, Economic healthcare costs of Clostridium difficile infection: a systematic review Journal of Hospital Infection. ,vol. 74, pp. 309- 318 ,(2010) , 10.1016/J.JHIN.2009.10.016
Eric T. Lofgren, Stephen R. Cole, David J. Weber, Deverick J. Anderson, Rebekah W. Moehring, Hospital-Acquired Clostridium difficile Infections Estimating All-Cause Mortality and Length of Stay Epidemiology. ,vol. 25, pp. 570- 575 ,(2014) , 10.1097/EDE.0000000000000119