Fine-tuning of cortical progenitor proliferation by thalamic afferents.

作者: Geraldine Zimmer , Katrin Gerstmann

DOI: 10.4103/1673-5374.158341

关键词:

摘要: During cerebral cortical cortex neurogenesis two major types of progenitors generate a variety morphologically and functionally diverse projection neurons destined for the different layers in non-gyrified mice. Radial glia cells (RGCs) undergo mitosis ventricular zone exhibit an apical-basal cell polarity, whereas non-polar intermediate progenitor (IPCs) divide basally subventricular (Franco Muller, 2013; Taverna et al., 2014). The contribution these subtypes to particular remains debated. Several lines evidence suggest that IPCs give rise majority neurons, while only 10–20 % are directly generated by apical 2013). generation excitatory follows temporal order with deep layer born first upper successively during later stages neurogenesis. Furthermore, symmetry mitotic division is instructive prospective fate daughter thus their laminar destination (Taverna Various intrinsic extrinsic cues have been identified regulate mode precursors. In addition intra-cortical control such as paracrine interactions between (North 2009) feedback signaling from post-mitotic plate (Seuntjens 2009), extra-cortical signals exerting over proliferation increasingly attracting attention. These include factors cortico-spinal fluid (Lehtinen Walsh, 2011) or invading glutamatergic (Teissier 2012). However, impact thalamo-cortical axons on formation largely unknown. Previous vitro studies suggested thalamic fibres cycle properties releasing soluble (Dehay 2001). turn, our data show contact-mediated regulation afferents (Figure 1) (Gerstmann 2015).

参考文章(12)
Eve Seuntjens, Anjana Nityanandam, Amaya Miquelajauregui, Joke Debruyn, Agata Stryjewska, Sandra Goebbels, Klaus-Armin Nave, Danny Huylebroeck, Victor Tarabykin, Sip1 regulates sequential fate decisions by feedback signaling from postmitotic neurons to progenitors Nature Neuroscience. ,vol. 12, pp. 1373- 1380 ,(2009) , 10.1038/NN.2409
Carme Auladell, Pol Pérez-Sust, Hans Supèr, Eduardo Soriano, The early development of thalamocortical and corticothalamic projections in the mouse. Anatomy and Embryology. ,vol. 201, pp. 169- 179 ,(2000) , 10.1007/PL00008238
H. A. North, X. Zhao, S. M. Kolk, M. A. Clifford, D. M. Ziskind, M. J. Donoghue, Promotion of proliferation in the developing cerebral cortex by EphA4 forward signaling. Development. ,vol. 136, pp. 2467- 2476 ,(2009) , 10.1242/DEV.034405
L. Zhou, D. Gall, Y. Qu, C. Prigogine, G. Cheron, F. Tissir, S. N. Schiffmann, A. M. Goffinet, Maturation of “Neocortex Isolé” In Vivo in Mice The Journal of Neuroscience. ,vol. 30, pp. 7928- 7939 ,(2010) , 10.1523/JNEUROSCI.6005-09.2010
A. Teissier, R. R. Waclaw, A. Griveau, K. Campbell, A. Pierani, Tangentially Migrating Transient Glutamatergic Neurons Control Neurogenesis and Maintenance of Cerebral Cortical Progenitor Pools Cerebral Cortex. ,vol. 22, pp. 403- 416 ,(2012) , 10.1093/CERCOR/BHR122
Sylvie Poluch, Sharon L. Juliano, Fine-Tuning of Neurogenesis is Essential for the Evolutionary Expansion of the Cerebral Cortex Cerebral Cortex. ,vol. 25, pp. 346- 364 ,(2015) , 10.1093/CERCOR/BHT232
Santos J. Franco, Ulrich Müller, Shaping Our Minds: Stem and Progenitor Cell Diversity in the Mammalian Neocortex Neuron. ,vol. 77, pp. 19- 34 ,(2013) , 10.1016/J.NEURON.2012.12.022
Christopher A. Walsh, Maria K. Lehtinen, Neurogenesis at the brain-cerebrospinal fluid interface. Annual Review of Cell and Developmental Biology. ,vol. 27, pp. 653- 679 ,(2011) , 10.1146/ANNUREV-CELLBIO-092910-154026
Colette Dehay, Pierre Savatier, Véronique Cortay, Henry Kennedy, Cell-cycle kinetics of neocortical precursors are influenced by embryonic thalamic axons. The Journal of Neuroscience. ,vol. 21, pp. 201- 214 ,(2001) , 10.1523/JNEUROSCI.21-01-00201.2001