Markov Chain Monte Carlo

作者: Kenneth Lange

DOI: 10.1007/978-1-4419-5945-4_26

关键词:

摘要: The Markov chain Monte Carlo (MCMC) revolution sweeping statistics is drastically changing how statisticians perform integration and summation. In particular, the Metropolis algorithm Gibbs sampling make it straightforward to construct a that samples from complicated conditional distribution. Once sample available, then any expectation can be approximated by forming its corresponding average. implications of this insight are profound for both classical Bayesian statistics. As bonus, trivial changes yield simulated annealing, general-purpose solving difficult combinatorial optimization problems.

参考文章(32)
Julian Besag, Peter J. Green, Spatial Statistics and Bayesian Computation Journal of the royal statistical society series b-methodological. ,vol. 55, pp. 25- 37 ,(1993) , 10.1111/J.2517-6161.1993.TB01467.X
Radford M. Neal, Invited comment on the paper "Slice Sampling" by Radford Neal Ims Institute of Mathematical Statistics. ,(2003) , 10.1214/AOS/1056562461
George S. Fishman, A first course in Monte Carlo Thomson Brooks/cole. ,(2006)
Cohn L. Mallows, More Comments onCp Technometrics. ,vol. 37, pp. 362- 372 ,(1995) , 10.1080/00401706.1995.10484370
D Geman, J Geweke, A Gelman, J Forster, P Diaconis, J Liu, Db Rubin, Ef Harding, Cj Geyer, J Moller, A Lawson, S Lin, Jd Wilson, Afm Smith, Xl Han, Je Kolassa, Rcl Wolff, Tm Lee, Gh Givens, Pj Diggle, Cp Robert, N Shephard, R Middleton, C Goodall, Pj Green, D Sinha, Sm Lewis, D Madigan, Ae Raftery, Dj Spiegelhalter, C Jennison, F Critchley, J Wakefield, O Arslan, Js Rosenthal, Go Roberts, C Aitken, Aj Gray, J Diebolt, Jt Kent, Ma Tanner, J Besag, G Celeux, Dg Clayton, Ap Grieve, D Phillips, C Kooperberg, P Ramgopal, A Gigli, Ch Liu, Dm Titterington, Ad Sokal, Gd Jonalasinio, Ea Thompson, Wr Gilks, Kv Mardia, J York, Rg Aykroyd, M Brewer, A Frigessi, P Clifford, Jm Marriott, Ae Gelfand, Cd Litton, C Berzuini, Ce Buck, Pdl Constable, DISCUSSION ON THE MEETING ON THE GIBBS SAMPLER AND OTHER MARKOV CHAIN-MONTE CARLO METHODS J ROY STAT SOC B MET , 55 (1) 53 - 102. (1993). ,(1993)
E Sobel, K Lange, A random walk method for computing genetic location scores. American Journal of Human Genetics. ,vol. 49, pp. 1320- 1334 ,(1991)
Charles J. Geyer, Markov Chain Monte Carlo Maximum Likelihood Interface Foundation of North America. ,(1991)
Geoffrey Hinton, Radford M. Neal, Bayesian learning for neural networks ,(1995)
David M. Higdon, Auxiliary Variable Methods for Markov Chain Monte Carlo with Applications Journal of the American Statistical Association. ,vol. 93, pp. 585- 595 ,(1998) , 10.1080/01621459.1998.10473712