NLMEM: a NEW SAS/IML macro for hierarchical nonlinear models

作者: Andrzej T. Galecki

DOI: 10.1016/S0169-2607(97)00066-7

关键词:

摘要: Analysis of longitudinal data is one the most challenging tasks in statistical modeling. In analysis, it often necessary to take into account nonlinear response a set parameters interest and correlation between measurements taken from same individual. addition, between- within-subject variation has be handled properly. An example addressing these issues hierarchical model, where parameter estimation can performed using linearization method. this paper new NLMEM SAS/IML macro for models proposed. The program uses portion code developed earlier NLINMIX. retains all benefits NLINMIX while allowing systematic part model structure specified IML syntax. Consequently, allows which are not tractable particular, us address advanced population pharmacokinetics pharmacodynamics by ordinary differential equations.

参考文章(11)
Edward F. Vonesh, Vernun M. Chinchilli, Linear and Nonlinear Models for the Analysis of Repeated Measurements ,(1996)
Thaddeus H. Grasela Jr., Steven M. Donn, Neonatal population pharmacokinetics of phenobarbital derived from routine clinical data Developmental pharmacology and therapeutics. ,vol. 8, pp. 374- 383 ,(1985) , 10.1159/000457062
Ramon C. Littell, SAS System for Mixed Models ,(1996)
Jos� C. Pinheiro, Douglas M. Bates, Unconstrained parametrizations for variance-covariance matrices Statistics and Computing. ,vol. 6, pp. 289- 296 ,(1996) , 10.1007/BF00140873
Mary J. Lindstrom, Douglas M. Bates, Nonlinear Mixed Effects Models for Repeated Measures Data Biometrics. ,vol. 46, pp. 673- 687 ,(1990) , 10.2307/2532087
N. E. Breslow, D. G. Clayton, Approximate inference in generalized linear mixed models Journal of the American Statistical Association. ,vol. 88, pp. 9- 25 ,(1993) , 10.1080/01621459.1993.10594284
RUSS WOLFINGER, Laplace's approximation for nonlinear mixed models. Biometrika. ,vol. 80, pp. 791- 795 ,(1993) , 10.1093/BIOMET/80.4.791
Russ Wolfinger, Michael O'connell, Generalized linear mixed models a pseudo-likelihood approach Journal of Statistical Computation and Simulation. ,vol. 48, pp. 233- 243 ,(1993) , 10.1080/00949659308811554
David M. Giltinan, Marie Davidian, Nonlinear Models for Repeated Measurement Data ,(1995)
M. J. Faddy, J. A. Jacquez, Compartmental Analysis in Biology and Medicine, 2nd edition. Biometrics. ,vol. 43, pp. 1028- ,(1987) , 10.2307/2531562