Zero Replacement in Compositional Data Sets

作者: J. A. Martín-Fernández , C. Barceló-Vidal , V. Pawlowsky-Glahn

DOI: 10.1007/978-3-642-59789-3_25

关键词:

摘要: The sample space of compositional data is the open simplex. Therefore, zeros in a set are identified either with below detection limit values, or lead to division into different subpopulations corresponding lower dimensional space. Most multivariate analysis techniques require complete matrices, thus calling for strategy imputation first case. Existing replacement methods rounded reviewed, and new method proposed, who’s properties analyzed illustrated. applied hierarchical cluster data.

参考文章(8)
J. A. Martín-Fernández, C. Barceló-Vidal, V. Pawlowsky-Glahn, A Critical Approach to Non-Parametric Classification of Compositional Data Studies in Classification, Data Analysis, and Knowledge Organization. pp. 49- 56 ,(1998) , 10.1007/978-3-642-72253-0_7
Franz Tauber, Spurious clusters in granulometric data caused by logratio transformation Mathematical Geosciences. ,vol. 31, pp. 491- 504 ,(1999) , 10.1023/A:1007532222145
Roderick JA Little, Donald B Rubin, None, Statistical Analysis with Missing Data ,(1987)
Richard F. Sanford, Charles T. Pierson, Robert A. Crovelli, An objective replacement method for censored geochemical data Mathematical Geosciences. ,vol. 25, pp. 59- 80 ,(1993) , 10.1007/BF00890676
J. Aitchison, C. Barceló-Vidal, J. A. Martín-Fernández, V. Pawlowsky-Glahn, Logratio Analysis and Compositional Distance Mathematical Geosciences. ,vol. 32, pp. 271- 275 ,(2000) , 10.1023/A:1007529726302
B. S. Everitt, W. Krzanowski, Principles of multivariate analysis ,(1988)