A numerical model for trickle bed reactors

作者: Richard M. Propp , Phillip Colella , William Y. Crutchfield , Marcus S. Day

DOI: 10.1006/JCPH.2000.6604

关键词:

摘要: … The equations are discretized using standard block-centered finite difference operators. We … We impose Dirichlet boundary conditions on saturation at x = 0 and x = 1. As a result of …

参考文章(29)
Yatish T. Shah, Gas-liquid-solid reactor design McGraw-Hill. ,(1979)
Khalid Aziz and Antonin Settari, Petroleum Reservoir Simulation ,(1979)
John B Bell, Phillip Colella, Harland M Glaz, A second-order projection method for the incompressible navier-stokes equations Journal of Computational Physics. ,vol. 85, pp. 257- 283 ,(1989) , 10.1016/0021-9991(89)90151-4
Stanley Osher, Riemann Solvers, the Entropy Condition, and Difference SIAM Journal on Numerical Analysis. ,vol. 21, pp. 217- 235 ,(1984) , 10.1137/0721016
A. Gianetto, V. Specchia, Trickle-bed reactors: state of art and perspectives Chemical Engineering Science. ,vol. 47, pp. 3197- 3213 ,(1992) , 10.1016/0009-2509(92)85029-B
M.D. Stevenson, M. Kagan, W.V. Pinczewski, Computational methods in petroleum reservoir simulation Computers & Fluids. ,vol. 19, pp. 1- 19 ,(1991) , 10.1016/0045-7930(91)90003-Z
V. Staněk, J. Hanika, V. Hlaváček, O. Trnka, The effect of liquid flow distribution on the behaviour of a trickle bed reactor Chemical Engineering Science. ,vol. 36, pp. 1045- 1067 ,(1981) , 10.1016/0009-2509(81)80092-9
R. Courant, H. Lewy, K. Friedrichs, On the Partial Difference Equations, of Mathematical Physics ,(2015)
M.C. Leverett, Capillary Behavior in Porous Solids Transactions of the AIME. ,vol. 142, pp. 152- 169 ,(1941) , 10.2118/941152-G
K. Mow, F. A. L. Dullien, I. F. Macdonald, M. S. El-Sayed, Flow through Porous Media-the Ergun Equation Revisited Industrial & Engineering Chemistry Fundamentals. ,vol. 18, pp. 199- 208 ,(1979) , 10.1021/I160071A001