First-principles study of cubic Bi pyrochlores

作者: Beverly Brooks Hinojosa , Juan C Nino , Aravind Asthagiri , None

DOI: 10.1103/PHYSREVB.77.104123

关键词:

摘要: We examined a range of cubic ${\mathrm{Bi}}_{2}{B}_{2}{\mathrm{O}}_{6}{\mathrm{O}}^{\ensuremath{'}}$ ($B=\mathrm{Ti}$, Ru, Rh, Ir, Os, and Pt) pyrochlores with density functional theory (DFT) calculations report the structural parameters along electronic structure bismuth in their ideal cubic, defect-free structure. also role cation displacements within find that only ${\mathrm{Bi}}_{2}{\mathrm{Ti}}_{2}{\mathrm{O}}_{7}$ shows substantial increase favorability Bi displacements. For ${\mathrm{Bi}}_{2}{\mathrm{Ti}}_{2}{\mathrm{O}}_{7}$, we an average displacement $0.38\ifmmode\pm\else\textpm\fi{}0.02\phantom{\rule{0.3em}{0ex}}\mathrm{\AA{}}$ for energy change $0.146\ifmmode\pm\else\textpm\fi{}0.001\phantom{\rule{0.3em}{0ex}}\mathrm{eV}∕\mathrm{Bi}$ atom. The follows spin-ice rules reported complex Bi-based pyrochlores, where two-long two-short bonds are found each tetrahedron ${\mathrm{Bi}}_{4}{\mathrm{O}}^{\ensuremath{'}}$. Examination main driving force is extent $\mathrm{Bi}\text{\ensuremath{-}}{\mathrm{O}}^{\ensuremath{'}}$ interactions metallic pyrochlores. In observe more overlap $\mathrm{Bi}\phantom{\rule{0.2em}{0ex}}s$ $p$ states $\mathrm{O}\phantom{\rule{0.2em}{0ex}}2p$ states, similar to ${\mathrm{Bi}}_{2}{\mathrm{Sn}}_{2}{\mathrm{O}}_{7}$, PbO, SnO, which leads asymmetric around cation. This electron associated cations ${\mathrm{Bi}}_{2}{\mathrm{Ti}}_{2}{\mathrm{O}}_{7}$. Our DFT results match general understanding from experimental studies but underestimate ${\mathrm{Bi}}_{2}{\mathrm{Ru}}_{2}{\mathrm{O}}_{7}$.

参考文章(58)
Chen Ang, Zhi Yu, H. J. Youn, C. A. Randall, A. S. Bhalla, L. E. Cross, J. Nino, M. Lanagan, Low-temperature dielectric relaxation in the pyrochlore (Bi3/4Zn1/4)2(Zn1/4Ta3/4)2O7 compound Applied Physics Letters. ,vol. 80, pp. 4807- 4809 ,(2002) , 10.1063/1.1486045
Juan C Nino, Michael T Lanagan, Clive A Randall, None, Dielectric relaxation in Bi2O3–ZnO–Nb2O5 cubic pyrochlore Journal of Applied Physics. ,vol. 89, pp. 4512- 4516 ,(2001) , 10.1063/1.1357468
M. Avdeev, M.K. Haas, J.D. Jorgensen, R.J. Cava, Static disorder from lone-pair electrons in Bi2−xMxRu2O7−y (M=Cu,Co; x=0,0.4) pyrochlores Journal of Solid State Chemistry. ,vol. 169, pp. 24- 34 ,(2002) , 10.1016/S0022-4596(02)00007-5
Rodney C. Ewing, William J. Weber, Jie Lian, Nuclear waste disposal—pyrochlore (A2B2O7): Nuclear waste form for the immobilization of plutonium and “minor” actinides Journal of Applied Physics. ,vol. 95, pp. 5949- 5971 ,(2004) , 10.1063/1.1707213
Stanislav Kamba, Viktor Porokhonskyy, Alexej Pashkin, Viktor Bovtun, Jan Petzelt, Juan C Nino, Susan Trolier-McKinstry, Michael T Lanagan, Clive A Randall, None, Anomalous broad dielectric relaxation inBi1.5Zn1.0Nb1.5O7pyrochlore Physical Review B. ,vol. 66, pp. 054106- ,(2002) , 10.1103/PHYSREVB.66.054106
P. E. Blöchl, Projector augmented-wave method Physical Review B. ,vol. 50, pp. 17953- 17979 ,(1994) , 10.1103/PHYSREVB.50.17953
Bernhardt J Wuensch, Kevin W Eberman, Catherine Heremans, Esther M Ku, Per Onnerud, Evangeline ME Yeo, Sossina M Haile, Judith K Stalick, James D Jorgensen, Connection between oxygen-ion conductivity of pyrochlore fuel-cell materials and structural change with composition and temperature Solid State Ionics. ,vol. 129, pp. 111- 133 ,(2000) , 10.1016/S0167-2738(99)00320-3
Ronald A. McCauley, Structural characteristics of pyrochlore formation Journal of Applied Physics. ,vol. 51, pp. 290- 294 ,(1980) , 10.1063/1.327368
M.A. Subramanian, G. Aravamudan, G.V. Subba Rao, Oxide pyrochlores — A review Progress in Solid State Chemistry. ,vol. 15, pp. 55- 143 ,(1983) , 10.1016/0079-6786(83)90001-8