Second-order subgradients of convex integral functionals

作者: Mohammed Moussaoui , Alberto Seeger

DOI: 10.1090/S0002-9947-99-02248-5

关键词:

摘要: The purpose of this work is twofold: on the one hand, we study second-order behaviour a nonsmooth convex function F defined over reflexive Banach space X. We establish several equivalent characterizations set &2F(x, y), known as subdifferential at x relative to y E F3F(I). On other examine case in which = If functional integral associated normal integrand f. extend result Chi Ngoc Do from X LPd (1 < p +oo) possible nonreflexive LP +oo). also formula for computing 82If (x, y).

参考文章(34)
R.T. Rockafellar, Maximal monotone relations and the second derivatives of nonsmooth functions Annales De L Institut Henri Poincare-analyse Non Lineaire. ,vol. 2, pp. 167- 184 ,(1985) , 10.1016/S0294-1449(16)30401-2
Hassan Riahi, Quelques résultats de stabilité en analyse épigraphique : Approche topologique et quantitative Académie de Montpellier, Université Montpellier II des Sciences et Techniques du Languedoc, Montpellier. ,(1989)
István Vályi, Ellipsoidal approximations in problems of control Springer Berlin Heidelberg. pp. 361- 384 ,(1988) , 10.1007/BFB0043197
Dominikus Noll, Second order differentiability of integral functionals on Sobolev spaces and L2-spaces. Crelle's Journal. ,vol. 436, pp. 1- 17 ,(1993)
H. Attouch, Variational convergence for functions and operators Pitman Advanced Pub. Program. ,(1984)
J.-B. Hiriart–Urruty, A New Set-Valued Second Order Derivative for Convex Functions North-holland Mathematics Studies. ,vol. 129, pp. 157- 182 ,(1986) , 10.1016/S0304-0208(08)72398-3
Theodor Precupanu, Viorel Barbu, Convexity and optimization in Banach spaces ,(1972)
R. Tyrrell Rockafellar, Conjugate Duality and Optimization ,(1987)
Jean-Paul Penot, Sub-hessians, super-hessians and conjugation Nonlinear Analysis-theory Methods & Applications. ,vol. 23, pp. 689- 702 ,(1994) , 10.1016/0362-546X(94)90212-7