Rho factor mediates flagellum and toxin phase variation and impacts virulence in Clostridioides difficile.

作者: Dominika Trzilova , Brandon R. Anjuwon-Foster , Dariana Torres Rivera , Rita Tamayo

DOI: 10.1371/JOURNAL.PPAT.1008708

关键词:

摘要: The intestinal pathogen Clostridioides difficile exhibits heterogeneity in motility and toxin production. This phenotypic is achieved through phase variation by site-specific recombination via the DNA recombinase RecV, which reversibly inverts "flagellar switch" upstream of flgB operon. A recV mutation prevents flagellar switch inversion results phenotypically locked strains. orientation influences expression operon post-transcription initiation, but specific molecular mechanism unknown. Here, we report isolation characterization spontaneous suppressor mutants non-motile, non-toxigenic flg OFF background that regained restored phenotypes corresponded with increased flagellum genes. motile contained single-nucleotide polymorphisms (SNPs) rho, encodes bacterial transcription terminator Rho factor. Analyses using transcriptional reporters indicate contributes to gene preferentially terminating mRNA within 5' leader sequence. Additionally, important for initial colonization intestine a mouse model infection, may part be due sporulation growth defects observed rho mutants. Together these data implicate factor as regulator affecting virulence factors C. difficile.

参考文章(105)
Reid C. Johnson, Site-specific DNA Inversion by Serine Recombinases Microbiology Spectrum. ,vol. 3, pp. 1- 36 ,(2015) , 10.1128/MICROBIOLSPEC.MDNA3-0047-2014
P G Quirk, E A Dunkley, P Lee, T A Krulwich, Identification of a putative Bacillus subtilis rho gene. Journal of Bacteriology. ,vol. 175, pp. 647- 654 ,(1993) , 10.1128/JB.175.24.8053.1993
S Clegg, L S Hancox, K S Yeh, Salmonella typhimurium fimbrial phase variation and FimA expression. Journal of Bacteriology. ,vol. 178, pp. 542- 545 ,(1996) , 10.1128/JB.178.2.542-545.1996
Laurent Bouillaut, Shonna M. McBride, Joseph A. Sorg, Genetic Manipulation of Clostridium difficile Current protocols in microbiology. ,vol. 20, pp. 92- ,(2011) , 10.1002/9780471729259.MC09A02S20
Alexandra Faulds‐Pain, Susan M. Twine, Evgeny Vinogradov, Philippa C. R. Strong, Anne Dell, Anthony M. Buckley, Gillian R. Douce, Esmeralda Valiente, Susan M. Logan, Brendan W. Wren, The post-translational modification of the Clostridium difficile flagellin affects motility, cell surface properties and virulence Molecular Microbiology. ,vol. 94, pp. 272- 289 ,(2014) , 10.1111/MMI.12755
LETICIA M Márquez, JD Helmann, Eugenio Ferrari, Helen M Parker, George W Ordal, Michael J Chamberlin, Studies of sigma D-dependent functions in Bacillus subtilis. Journal of Bacteriology. ,vol. 172, pp. 3435- 3443 ,(1990) , 10.1128/JB.172.6.3435-3443.1990
Michelle A. Kriner, Eduardo A. Groisman, The Bacterial Transcription Termination Factor Rho Coordinates Mg2 + Homeostasis with Translational Signals Journal of Molecular Biology. ,vol. 427, pp. 3834- 3849 ,(2015) , 10.1016/J.JMB.2015.10.020
Ana Antunes, Isabelle Martin-Verstraete, Bruno Dupuy, CcpA-mediated repression of Clostridium difficile toxin gene expression. Molecular Microbiology. ,vol. 79, pp. 882- 899 ,(2011) , 10.1111/J.1365-2958.2010.07495.X
Casey M. Theriot, Charles C. Koumpouras, Paul E. Carlson, Ingrid I. Bergin, David M. Aronoff, Vincent B. Young, Cefoperazone-treated mice as an experimental platform to assess differential virulence of Clostridium difficile strains Gut microbes. ,vol. 2, pp. 326- 334 ,(2011) , 10.4161/GMIC.19142
Sean S. Dineen, Anuradha C. Villapakkam, Jared T. Nordman, Abraham L. Sonenshein, Repression of Clostridium difficile toxin gene expression by CodY Molecular Microbiology. ,vol. 66, pp. 206- 219 ,(2007) , 10.1111/J.1365-2958.2007.05906.X