Generic modules for gentle algebras

作者: Andrew T. Carroll

DOI: 10.1016/J.JALGEBRA.2015.03.035

关键词:

摘要: Abstract In this article, we construct the generic modules in each irreducible component of variety β -dimensional a triangular gentle algebra. The construction is completely combinatorial and allows for determination canonical decomposition components as well calculation dimension higher self-extension spaces modules.

参考文章(11)
Jerzy Weyman, Witold Kraśkiewicz, Generic decompositions and semi-invariants for string algebras arXiv: Representation Theory. ,(2011)
Peter Gabriel, Unzerlegbare Darstellungen I Manuscripta Mathematica. ,vol. 6, pp. 71- 103 ,(1972) , 10.1007/BF01298413
Andrew T. Carroll, Calin Chindris, On the invariant theory for acyclic gentle algebras Transactions of the American Mathematical Society. ,vol. 367, pp. 3481- 3508 ,(2014) , 10.1090/S0002-9947-2014-06191-6
Corrado De Concini, Elisabetta Strickland, On the variety of complexes Advances in Mathematics. ,vol. 41, pp. 57- 77 ,(1981) , 10.1016/S0001-8708(81)80004-7
Aidan Schofield, General Representations of Quivers Proceedings of the London Mathematical Society. ,vol. s3-65, pp. 46- 64 ,(1992) , 10.1112/PLMS/S3-65.1.46
V. G. Kac, Infinite root systems, representations of graphs and invariant theory Inventiones Mathematicae. ,vol. 56, pp. 57- 92 ,(1980) , 10.1007/BF01403155
Harm Derksen, Jerzy Weyman, On the Canonical Decomposition of Quiver Representations Compositio Mathematica. ,vol. 133, pp. 245- 265 ,(2002) , 10.1023/A:1020007100426
Peter Gabriel, Finite representation type is open Springer, Berlin, Heidelberg. pp. 132- 155 ,(1975) , 10.1007/BFB0081219