Understanding finite dimensional representations generically

作者: K. R. Goodearl , B. Huisgen-Zimmermann

DOI: 10.1007/978-3-319-94033-5_6

关键词:

摘要: We survey the development and status quo of a subject best described as “generic representation theory finite dimensional algebras”, which started taking shape in early 1980s. Let \({\Lambda }\) be algebra over an algebraically closed field. Roughly, aims at (a) pinning down irreducible components standard parametrizing varieties for }\)-modules with fixed dimension vector, (b) assembling generic information on modules each individual component, that is, data shared by all dense open subset component. present overview results spanning spectrum from hereditary algebras through tame non-hereditary case to wild algebras.

参考文章(30)
Andrew T. Carroll, Generic modules for gentle algebras Journal of Algebra. ,vol. 437, pp. 177- 201 ,(2015) , 10.1016/J.JALGEBRA.2015.03.035
B. Huisgen-Zimmermann, A hierarchy of parametrizing varieties for representations arXiv: Representation Theory. ,(2014)
Jan Schröer, Christof Geiß, Extension-orthogonal components of preprojective varieties Transactions of the American Mathematical Society. ,vol. 357, pp. 1953- 1962 ,(2004) , 10.1090/S0002-9947-04-03555-X
Claus Michael Ringel, Tame Algebras and Integral Quadratic Forms ,(1984)
Birge Huisgen-Zimmermann, Classifying representations by way of Grassmannians Transactions of the American Mathematical Society. ,vol. 359, pp. 2687- 2719 ,(2007) , 10.1090/S0002-9947-07-03997-9
Christof Geiß, Jan Schröer, Extension-orthogonal components of nilpotent varieties arXiv: Representation Theory. ,(2002) , 10.1090/S0002-9947-04-03555-X
Jan Schr�er, Varieties of pairs of nilpotent matrices annihilating each other Commentarii Mathematici Helvetici. ,vol. 79, pp. 396- 426 ,(2004) , 10.1007/S00014-003-0788-3
M Barot, Jan Schröer, Module Varieties over Canonical Algebras Journal of Algebra. ,vol. 246, pp. 175- 192 ,(2001) , 10.1006/JABR.2001.8933