Spinal Fusion Cage Design

作者: F. Jabbary Aslani , D. W. L. Hukins , D. E. T. Shepherd

DOI: 10.1007/978-3-540-92841-6_383

关键词:

摘要: A fusion cage is used to aid of an intervertebral joint. To date, cages have been commonly made materials (metals or polymers) that remain in the body. Postoperative complications with these permanent fixtures might be overcome by using biodegradable/bioabsorbable composite (BBC) cages. There are requirements for BBC as a material, including load bearing ability. The aim this study was evaluate feasibility material. This would degrade gradually simultaneously replaced bone. Post-operative reduced no foreign bodies within patient and bone growth unrestricted. design has also optimized based on material properties. Cage features such teeth holes investigated obtain suitable BBC. Finite Element Analysis carried out concept models, properties polyetheretherketone (an existing material) comparison purposes. results, from engineering view point, determined

参考文章(15)
M.S. Abu Bakar, M.H.W. Cheng, S.M. Tang, S.C. Yu, K. Liao, C.T. Tan, K.A. Khor, P. Cheang, Tensile properties, tension-tension fatigue and biological response of polyetheretherketone-hydroxyapatite composites for load-bearing orthopedic implants. Biomaterials. ,vol. 24, pp. 2245- 2250 ,(2003) , 10.1016/S0142-9612(03)00028-0
Alexander R Vaccaro, Kush Singh, Regis Haid, Scott Kitchel, Paul Wuisman, William Taylor, Charles Branch, Steven Garfin, The use of bioabsorbable implants in the spine. The Spine Journal. ,vol. 3, pp. 227- 237 ,(2003) , 10.1016/S1529-9430(02)00412-6
P. Sepulveda, J. R. Jones, L. L. Hench, In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses. Journal of Biomedical Materials Research. ,vol. 61, pp. 301- 311 ,(2002) , 10.1002/JBM.10207
D. Behrend, K.-P. Schmitz, A. Haubold, Bioresorbable polymer materials for implant technology Advanced Engineering Materials. ,vol. 2, pp. 123- 125 ,(2000) , 10.1002/(SICI)1527-2648(200003)2:3<123::AID-ADEM123>3.0.CO;2-P
Michael A. Slivka, Neil C. Leatherbury, Kris Kieswetter, Gabriele G. Niederauer, Porous, Resorbable, Fiber-Reinforced Scaffolds Tailored for Articular Cartilage Repair Tissue Engineering. ,vol. 7, pp. 767- 780 ,(2001) , 10.1089/107632701753337717
L. L. Hench, Third-Generation Biomedical Materials Science. ,vol. 295, pp. 1014- 1017 ,(2002) , 10.1126/SCIENCE.1067404
C. Mauli Agrawal, Robert B. Ray, Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. Journal of Biomedical Materials Research. ,vol. 55, pp. 141- 150 ,(2001) , 10.1002/1097-4636(200105)55:2<141::AID-JBM1000>3.0.CO;2-J
SM Tang, P Cheang, MS AbuBakar, KA Khor, K Liao, Tension-tension fatigue behavior of hydroxyapatite reinforced polyetheretherketone composites International Journal of Fatigue. ,vol. 26, pp. 49- 57 ,(2004) , 10.1016/S0142-1123(03)00080-X
C.M. Agrawal, K.A. Athanasiou, J.D. Heckman, Biodegradable PLA-PGA polymers for tissue engineering in orthopaedics Materials Science Forum. ,vol. 250, pp. 115- 128 ,(1997) , 10.4028/WWW.SCIENTIFIC.NET/MSF.250.115