Porous, Resorbable, Fiber-Reinforced Scaffolds Tailored for Articular Cartilage Repair

作者: Michael A. Slivka , Neil C. Leatherbury , Kris Kieswetter , Gabriele G. Niederauer

DOI: 10.1089/107632701753337717

关键词:

摘要: Porous 75:25 poly(D,L-lactide-co-glycolide) scaffolds reinforced with polyglycolide fibers were prepared mechanical properties tailored for use in articular cartilage repair. Compression testing was performed to investigate the influence of physiological conditions, manufacturing method, anisotropic due predominant fiber orientation, amounts reinforcement (0 20 wt, %), and viscoelasticity via a range strain rates. Using same modality, compared pig goat cartilage. Results showed that under conditions (aqueous, 37 degrees C) much lower than when tested ambient conditions. The method anisotropy significantly influenced properties. compressive modulus yield strength proportionally increased increasing up 20%. From 0.01 10 mm/mm/min rate, logarithmic fashion, semi-log fashion. non-reinforced most similar using but improvement stiffer could provide needed structural support vivo loads.

参考文章(54)
Noushin S. Dunkelman, Michael P. Zimber, Richard G. LeBaron, Rebecca Pavelec, Michael Kwan, A. F. Purchio, Cartilage production by rabbit articular chondrocytes on polyglycolic acid scaffolds in a closed bioreactor system Biotechnology and Bioengineering. ,vol. 46, pp. 299- 305 ,(1995) , 10.1002/BIT.260460402
Joseph A. Buckwalter, CHONDRAL AND OSTEOCHONDRAL INJURIES: MECHANISMS OF INJURY AND REPAIR RESPONSES Operative Techniques in Orthopaedics. ,vol. 7, pp. 263- 269 ,(1997) , 10.1016/S1048-6666(97)80028-6
Keith T. Paige, Charles A. Vacanti, Engineering new tissue: formation of neo-cartilage. Tissue Engineering. ,vol. 1, pp. 97- 106 ,(1995) , 10.1089/TEN.1995.1.97
B. Saad, G. Ciardelli, S. Matter, M. Welti, G. K. Uhlschmid, P. Neuenschwander, U. W. Suter, Degradable and highly porous polyesterurethane foam as biomaterial: Effects and phagocytosis of degradation products in osteoblasts Journal of Biomedical Materials Research. ,vol. 39, pp. 594- 602 ,(1998) , 10.1002/(SICI)1097-4636(19980315)39:4<594::AID-JBM14>3.0.CO;2-7
Joseph E Hale, M James Rudert, Thomas D Brown, Indentation assessment of biphasic mechanical property deficits in size-dependent osteochondral defect repair Journal of Biomechanics. ,vol. 26, pp. 1319- 1325 ,(1993) , 10.1016/0021-9290(93)90355-I
V.C. Mow, M.C. Gibbs, W.M. Lai, W.B. Zhu, K.A. Athanasiou, Biphasic indentation of articular cartilage--II. A numerical algorithm and an experimental study. Journal of Biomechanics. ,vol. 22, pp. 853- 861 ,(1989) , 10.1016/0021-9290(89)90069-9
J. Klompmaker, H.W.B. Jansen, R.P.H. Veth, H.K.L. Nielsen, J.H. de Groot, A.J. Pennings, Porous polymer implants for repair of full-thickness defects of articular cartilage: An experimental study in rabbit and dog Biomaterials. ,vol. 13, pp. 625- 634 ,(1992) , 10.1016/0142-9612(92)90031-I
Robert C. Thomson, Michael J. Yaszemski, John M. Powers, Antonios G. Mikos, Fabrication of biodegradable polymer scaffolds to engineer trabecular bone Journal of Biomaterials Science-polymer Edition. ,vol. 7, pp. 23- 38 ,(1996) , 10.1163/156856295X00805
H. Lo, M.S. Ponticiello, K.W. Leong, Fabrication of controlled release biodegradable foams by phase separation. Tissue Engineering. ,vol. 1, pp. 15- 28 ,(1995) , 10.1089/TEN.1995.1.15
Douglas E. Thompson, C. Mauli Agrawal, Kyriacos Athanasiou, The effects of dynamic compressive loading on biodegradable implants of 50-50% polylactic Acid-polyglycolic Acid. Tissue Engineering. ,vol. 2, pp. 61- 74 ,(1996) , 10.1089/TEN.1996.2.61