Architectural design of Ti6Al4V scaffold controls the osteogenic volume and application area of the scaffold

作者: Linlin Liu , Su Wang , Juncai Liu , Fuyuan Deng , Zhong Li

DOI: 10.1016/J.JMRT.2020.11.061

关键词:

摘要: … structure and a strut structure with a porosity of 65% and a … We implanted the scaffold into the femoral condyle of the … We also used CFD to analyze the internal flow field of four structures …

参考文章(42)
Feihu Zhao, Ted J. Vaughan, Laoise M. McNamara, Quantification of fluid shear stress in bone tissue engineering scaffolds with spherical and cubical pore architectures. Biomechanics and Modeling in Mechanobiology. ,vol. 15, pp. 561- 577 ,(2016) , 10.1007/S10237-015-0710-0
Naoya Taniguchi, Shunsuke Fujibayashi, Mitsuru Takemoto, Kiyoyuki Sasaki, Bungo Otsuki, Takashi Nakamura, Tomiharu Matsushita, Tadashi Kokubo, Shuichi Matsuda, Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment. Materials Science and Engineering: C. ,vol. 59, pp. 690- 701 ,(2016) , 10.1016/J.MSEC.2015.10.069
E. Gamsjäger, C.M. Bidan, F.D. Fischer, P. Fratzl, J.W.C. Dunlop, Modelling the role of surface stress on the kinetics of tissue growth in confined geometries Acta Biomaterialia. ,vol. 9, pp. 5531- 5543 ,(2013) , 10.1016/J.ACTBIO.2012.10.020
S. Van Bael, Y.C. Chai, S. Truscello, M. Moesen, G. Kerckhofs, H. Van Oosterwyck, J.-P. Kruth, J. Schrooten, The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds Acta Biomaterialia. ,vol. 8, pp. 2824- 2834 ,(2012) , 10.1016/J.ACTBIO.2012.04.001
Nan Yang, Zhi Quan, Dawei Zhang, Yanling Tian, Multi-morphology transition hybridization CAD design of minimal surface porous structures for use in tissue engineering Computer-aided Design. ,vol. 56, pp. 11- 21 ,(2014) , 10.1016/J.CAD.2014.06.006
Jan Wieding, Tobias Lindner, Philipp Bergschmidt, Rainer Bader, Biomechanical stability of novel mechanically adapted open-porous titanium scaffolds in metatarsal bone defects of sheep. Biomaterials. ,vol. 46, pp. 35- 47 ,(2015) , 10.1016/J.BIOMATERIALS.2014.12.010
Cécile M. Bidan, Krishna P. Kommareddy, Monika Rumpler, Philip Kollmannsberger, Peter Fratzl, John W. C. Dunlop, Geometry as a Factor for Tissue Growth: Towards Shape Optimization of Tissue Engineering Scaffolds Advanced Healthcare Materials. ,vol. 2, pp. 186- 194 ,(2013) , 10.1002/ADHM.201200159
S.M. Giannitelli, D. Accoto, M. Trombetta, A. Rainer, Current trends in the design of scaffolds for computer-aided tissue engineering Acta Biomaterialia. ,vol. 10, pp. 580- 594 ,(2014) , 10.1016/J.ACTBIO.2013.10.024
Andy L. Olivares, Èlia Marsal, Josep A. Planell, Damien Lacroix, Finite element study of scaffold architecture design and culture conditions for tissue engineering. Biomaterials. ,vol. 30, pp. 6142- 6149 ,(2009) , 10.1016/J.BIOMATERIALS.2009.07.041
Michael de Wild, Ralf Schumacher, Kyrill Mayer, Erik Schkommodau, Daniel Thoma, Marius Bredell, Astrid Kruse Gujer, Klaus W. Grätz, Franz E. Weber, Bone regeneration by the osteoconductivity of porous titanium implants manufactured by selective laser melting: a histological and micro computed tomography study in the rabbit. Tissue Engineering Part A. ,vol. 19, pp. 2645- 2654 ,(2013) , 10.1089/TEN.TEA.2012.0753