A new algorithm for computing sparse solutions to linear inverse problems

作者: G. Harikumar , Y. Bresler

DOI: 10.1109/ICASSP.1996.543672

关键词:

摘要: We present an iterative algorithm for computing sparse solutions (or approximate solutions) to linear inverse problems. The is intended supplement the existing arsenal of techniques. It shown converge local minima a function form used picking out solutions, and its connection with techniques explained. Finally, it demonstrated on subset selection deconvolution examples. fact that proposed sometimes successful when greedy algorithms fail also demonstrated.

参考文章(9)
Josef Kittler, Pierre A. Devijver, Pattern recognition : a statistical approach Prentice/Hall International. ,(1982)
J.-J. Fuchs, Extension of the Pisarenko method to sparse linear arrays international conference on acoustics, speech, and signal processing. ,vol. 3, pp. 2100- 2103 ,(1995) , 10.1109/ICASSP.1995.478489
B. K. Natarajan, Sparse Approximate Solutions to Linear Systems SIAM Journal on Computing. ,vol. 24, pp. 227- 234 ,(1995) , 10.1137/S0097539792240406
P. Charbonnier, L. Blanc-Feraud, M. Barlaud, An adaptive reconstruction method involving discontinuities IEEE International Conference on Acoustics Speech and Signal Processing. ,vol. 5, pp. 491- 494 ,(1993) , 10.1109/ICASSP.1993.319856
A.H. Delaney, Y. Bresler, Efficient edge-preserving regularization for limited-angle tomography international conference on image processing. ,vol. 3, pp. 3176- 3176 ,(1995) , 10.1109/ICIP.1995.537609
M.S. O'Brien, A.N. Sinclair, S.M. Kramer, Recovery of a sparse spike time series by L/sub 1/ norm deconvolution IEEE Transactions on Signal Processing. ,vol. 42, pp. 3353- 3365 ,(1994) , 10.1109/78.340772
I.F. Gorodnitsky, B.D. Rao, A recursive weighted minimum norm algorithm: Analysis and applications IEEE International Conference on Acoustics Speech and Signal Processing. ,vol. 3, pp. 456- 459 ,(1993) , 10.1109/ICASSP.1993.319533
Gene H Golub, Charles F Van Loan, Matrix computations ,(1983)