On the Optimality of the Backward Greedy Algorithm for the Subset Selection Problem

作者: Christophe Couvreur , Yoram Bresler

DOI: 10.1137/S0895479898332928

关键词:

摘要: … noisy observation of b = b0 + η. That is, the subset selection is a detection and estimation problem … As usual we define the distance d(x, S) between a point x and a set S as the distance …

参考文章(9)
Alan H. Feiveson, Finding the Best Regression Subset by Reduction in Nonfull-Rank Cases SIAM Journal on Matrix Analysis and Applications. ,vol. 15, pp. 194- 204 ,(1994) , 10.1137/S0895479891221721
Alan J. Miller, Subset Selection in Regression ,(2002)
Å. Björck, H. Park, L. Eldén, Accurate Downdating of Least Squares Solutions SIAM Journal on Matrix Analysis and Applications. ,vol. 15, pp. 549- 568 ,(1994) , 10.1137/S089547989222895X
B. K. Natarajan, Sparse Approximate Solutions to Linear Systems SIAM Journal on Computing. ,vol. 24, pp. 227- 234 ,(1995) , 10.1137/S0097539792240406
M. Nafie, M. Ali, A.H. Tewfik, Optimal subset selection for adaptive signal representation international conference on acoustics speech and signal processing. ,vol. 5, pp. 2511- 2514 ,(1996) , 10.1109/ICASSP.1996.547974
S.J. Reeves, An efficient implementation of the backward greedy algorithm for sparse signal reconstruction IEEE Signal Processing Letters. ,vol. 6, pp. 266- 268 ,(1999) , 10.1109/97.789606
C. Couvreur, Y. Bresler, Dictionary-based decomposition of linear mixtures of Gaussian processes international conference on acoustics speech and signal processing. ,vol. 5, pp. 2519- 2522 ,(1996) , 10.1109/ICASSP.1996.547976
G. Harikumar, Y. Bresler, A new algorithm for computing sparse solutions to linear inverse problems international conference on acoustics speech and signal processing. ,vol. 3, pp. 1331- 1334 ,(1996) , 10.1109/ICASSP.1996.543672
Gene H Golub, Charles F Van Loan, Matrix computations ,(1983)