Breast cancer identification: KDD CUP winner's report

作者: Claudia Perlich , Prem Melville , Yan Liu , Grzegorz Świrszcz , Richard Lawrence

DOI: 10.1145/1540276.1540289

关键词:

摘要: We describe the ideas and methodologies that we developed in addressing KDD Cup 2008 on early breast cancer detection, discuss how they contributed to our success. The most important components of solution were 1) identification predictive information patient identifier, 2) a linear SVM 117 provided features, 3) heuristic post-processing approach optimize evaluation criteria.

参考文章(6)
Aron Inger, Nurit Vatnik, Saharon Rosset, Einat Neumann, KDD-Cup 2000 ACM SIGKDD Explorations Newsletter. ,vol. 2, pp. 94- ,(2000) , 10.1145/380995.381038
Saharon Rosset, Claudia Perlich, Yan Liu, Making the most of your data ACM SIGKDD Explorations Newsletter. ,vol. 9, pp. 66- 69 ,(2007) , 10.1145/1345448.1345463
Thorsten Joachims, A support vector method for multivariate performance measures Proceedings of the 22nd international conference on Machine learning - ICML '05. pp. 377- 384 ,(2005) , 10.1145/1102351.1102399
Rong Yan, Jian Zhang, Jie Yang, A.G. Hauptmann, A discriminative learning framework with pairwise constraints for video object classification computer vision and pattern recognition. ,vol. 28, pp. 578- 593 ,(2004) , 10.1109/TPAMI.2006.65
Thomas G. Dietterich, Giorgio Valentini, Low bias bagged support vector machines international conference on machine learning. pp. 752- 759 ,(2003)