Ophthalmological Investigations in Toxicity Studies

作者: Birgit Niggemann

DOI: 10.1016/B978-0-12-417144-2.00028-7

关键词:

摘要: Abstract Because of the high similarity morphology eye in humans and nonhuman primates (NHPs), NHP is a very good model to assess toxicity drugs eye. As standard for all laboratory practice (GLP) studies, posterior part (retina, optic nerve, macula, vessels) examined by direct and/or indirect ophthalmoscopy, anterior medium using slit lamp. More specific investigations are necessary provide more detailed information about potential influence compounds If identified as target organ, additional need be performed. Fundus photographs can taken document fundus findings progression these changes. Fluorescence angiography demonstrates vascular flow abnormalities trees within fundus. Electroretinography used detect functional defects photoreceptors, neuronal cells, glia cells. Intraocular pressure (IOP) measurements monitor drug-induced IOP Corneal thickness mainly determined studies with local administration cornea. In addition, specular microscopy able evaluate cornea endothelium. Scheimpflug photography technique further lens. Optical coherence tomography an imaging demonstrating tissue microstructure resolution approaching that light microscopy. This laser scanning ophthalmoscope investigate structure

参考文章(11)
Walter H. Bee, Rainhart Korte, Friedhelm Vogel, Electroretinography in the Non-Human Primate as a Standardized Method in Toxicology Springer, Boston, MA. pp. 53- 61 ,(1995) , 10.1007/978-1-4615-1887-7_5
Robert H. Webb, George W. Hughes, Francois C. Delori, Confocal scanning laser ophthalmoscope Applied Optics. ,vol. 26, pp. 1492- 1499 ,(1987) , 10.1364/AO.26.001492
James G. Fujimoto, Costas Pitris, Stephen A. Boppart, Mark E. Brezinski, Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy Neoplasia. ,vol. 2, pp. 9- 25 ,(2000) , 10.1038/SJ.NEO.7900071
Marina Garcia Garrido, Susanne C. Beck, Regine Mühlfriedel, Sylvie Julien, Ulrich Schraermeyer, Mathias W. Seeliger, Towards a Quantitative OCT Image Analysis PLoS ONE. ,vol. 9, pp. e100080- ,(2014) , 10.1371/JOURNAL.PONE.0100080
Michael F. Marmor, Geoffrey B. Arden, Sven-Erik Nilsson, Eberhart Zrenner, , Standard for clinical electroretinography Documenta Ophthalmologica. ,vol. 107, pp. 816- 819 ,(1989) , 10.1007/BF00154486
Serge G. Rosolen, Gérard Saint-Macary, Vincent Gautier, Jean-François LeGargasson, Ocular fundus images with confocal scanning laser ophthalmoscopy in the dog, monkey and minipig. Veterinary Ophthalmology. ,vol. 4, pp. 41- 45 ,(2001) , 10.1046/J.1463-5224.2001.00148.X
R. H. Webb, G. W. Hughes, O. Pomerantzeff, Flying spot TV ophthalmoscope Applied Optics. ,vol. 19, pp. 2991- 2997 ,(1980) , 10.1364/AO.19.002991
Donald C. Hood, , Michael Bach, Mitchell Brigell, David Keating, Mineo Kondo, Jonathan S. Lyons, Michael F. Marmor, Daphne L. McCulloch, Anja M. Palmowski-Wolfe, ISCEV standard for clinical multifocal electroretinography (mfERG) (2011 edition) Documenta Ophthalmologica. ,vol. 124, pp. 1- 13 ,(2012) , 10.1007/S10633-011-9296-8
Alfred Wegener, Heike Laser-Junga, Photography of the anterior eye segment according to Scheimpflug's principle: options and limitations - a review. Clinical and Experimental Ophthalmology. ,vol. 37, pp. 144- 154 ,(2009) , 10.1111/J.1442-9071.2009.02018.X
Erich E. Sutter, Duong Tran, The field topography of ERG components in man—I. The photopic luminance response Vision Research. ,vol. 32, pp. 433- 446 ,(1992) , 10.1016/0042-6989(92)90235-B