An Introduction to Hilbert Module Approach to Multivariable Operator Theory

作者: Jaydeb Sarkar

DOI: 10.1007/978-3-0348-0667-1_59

关键词:

摘要: Let $\{T_1, \ldots, T_n\}$ be a set of $n$ commuting bounded linear operators on Hilbert space $\mathcal{H}$. Then the $n$-tuple $(T_1, T_n)$ turns $\mathcal{H}$ into module over $\mathbb{C}[z_1, z_n]$ in following sense: \[\mathbb{C}[z_1, z_n] \times \mathcal{H} \raro \clh, \quad (p, h) \mapsto p(T_1, T_n)h,\]where $p \in \mathbb{C}[z_1, and $h \mathcal{H}$. The above is usually called z_n]$. modules (or natural function algebras) were first introduced by R. G. Douglas C. Foias 1976. two main driving forces algebraic complex geometric views to multivariable operator theory. This article gives an introduction algebras surveys some recent developments. Here theory presented as combination commutative algebra, geometry spaces its applications $n$-tuples ($n \geq 1$) operators. topics which are studied include: model from point view, holomorphic functions, tensor products, localizations, dilations, submodules quotient modules, free resolutions, curvature Fredholm modules. More developments study approach can found companion paper, "Applications Module Approach Multivariable Operator Theory".

参考文章(204)
Shibananda Biswas, Dinesh Kumar Keshari, Gadadhar Misra, Infinitely divisible metrics and curvature inequalities for operators in the Cowen-Douglas class Journal of The London Mathematical Society-second Series. ,vol. 88, pp. 941- 956 ,(2013) , 10.1112/JLMS/JDT045
M. S. Bartlett, H. Wold, A study in the analysis of stationary time series Biometrika. ,vol. 23, pp. 219- ,(1955) , 10.2307/1907883
Jim Agler, The Arveson Extension Theorem and coanalytic models Integral Equations and Operator Theory. ,vol. 5, pp. 608- 631 ,(1982) , 10.1007/BF01694057
Richard W. Carey, Joel D. Pincus, Mosaics, principal functions, and mean motion in von Neumann algebras Acta Mathematica. ,vol. 138, pp. 153- 218 ,(1977) , 10.1007/BF02392315
Quanlei Fang, Jingbo Xia, Schatten class membership of Hankel operators on the unit sphere Journal of Functional Analysis. ,vol. 257, pp. 3082- 3134 ,(2009) , 10.1016/J.JFA.2009.05.006
Gelu Popescu, Poisson Transforms on SomeC*-Algebras Generated by Isometries Journal of Functional Analysis. ,vol. 161, pp. 27- 61 ,(1999) , 10.1006/JFAN.1998.3346
Richard Carey, Joel Pincus, Mean motion, principal functions, and the zeros of dirichlet series Integral Equations and Operator Theory. ,vol. 2, pp. 484- 502 ,(1979) , 10.1007/BF01691074
Gadadhar Misra, N.S.Narsimha Sastry, Bounded modules, extremal problems, and a curvature inequality Journal of Functional Analysis. ,vol. 88, pp. 118- 134 ,(1990) , 10.1016/0022-1236(90)90121-Z
K.R.M. Attele, A.R. Lubin, Dilations and Commutant Lifting for Jointly Isometric Operators—A Geometric Approach Journal of Functional Analysis. ,vol. 140, pp. 300- 311 ,(1996) , 10.1006/JFAN.1996.0109
Mircea Martin, Hermitian Geometry and Involutive Algebras Mathematische Zeitschrift. ,vol. 188, pp. 359- 382 ,(1985) , 10.1007/BF01159182