Ando dilations, von Neumann inequality, and distinguished varieties

作者: Jaydeb Sarkar , B. Krishna Das

DOI:

关键词:

摘要: Let $\mathbb{D}$ denote the unit disc in complex plane $\mathbb{C}$ and let $\mathbb{D}^2 = \mathbb{D} \times \mathbb{D}$ be bidisc $\mathbb{C}^2$. $(T_1, T_2)$ a pair of commuting contractions on Hilbert space $\mathcal{H}$. $\mbox{dim } \mbox{ran}(I_{\mathcal{H}} - T_j T_j^*) < \infty$, $j 1, 2$, $T_1$ pure contraction. Then there exists variety $V \subseteq \overline{\mathbb{D}}^2$ such that for any polynomial $p \in \mathbb{C}[z_1, z_2]$, inequality \[ \|p(T_1,T_2)\|_{\mathcal{B}(\mathcal{H})} \leq \|p\|_V \] holds. If, addition, $T_2$ is pure, then \[V \{(z_1, z_2) \mathbb{D}^2: \det (\Psi(z_1) z_2 I_{\mathbb{C}^n}) 0\}\]is distinguished variety, where $\Psi$ matrix-valued analytic function unitary $\partial \mathbb{D}$. Our results comprise new proof, as well generalization, Agler McCarthy's sharper von Neumann pairs strictly contractive matrices.

参考文章(5)
Jim Agler, John E. McCarthy, Pick Interpolation and Hilbert Function Spaces ,(2002)
Hari Bercovici, Béla Szőkefalvi-Nagy, László Kérchy, Ciprian Foiaş, Harmonic Analysis of Operators on Hilbert Space ,(2010)
Jim Agler, John McCarthy, Distinguished Varieties ,(2005)