Selection of thermotolerant yeast strains Saccharomyces cerevisiae for bioethanol production

作者: Araque Edgardo , Parra Carolina , Rodríguez Manuel , Freer Juanita , Jaime Baeza

DOI: 10.1016/J.ENZMICTEC.2008.02.007

关键词:

摘要: Abstract The simultaneous saccharification and fermentation (SSF) process of lignocellulosic materials requires the utilization microorganisms capable working at high temperatures. selection Saccharomyces cerevisiae strains able to ferment sugars obtained from material temperatures above 35 °C with ethanol yield has become a necessity. In this work, 11 S. were screened for their ability grow glucose in temperature range 35–45 °C. All grew (in agar plates) 35 40 °C, only two 42 °C, no strain 45 °C. yeasts placed liquid medium, incubated 35, 40 42 °C. Glucose-to-ethanol conversion was between 50% 80% theoretical value. Strains that produced least 70% submitted acclimatization treatments. One pure yeast isolated (IR2-9a). For bleached kraft pulp as well organosolv-pretreated Pinus radiata chips, yields by SSF using IR2-9a higher than those control yeast.

参考文章(21)
E. G. Rikhvanov, N. N. Varakina, T. M. Rusaleva, E. I. Rachenko, V. A. Kiseleva, V. K. Voinikov, [Heat shock-induced changes in the respiration of the yeast Saccharomyces cerevisiae]. Microbiology. ,vol. 70, pp. 531- 535 ,(2001) , 10.1023/A:1010442429489
Kuei-Yu Chen, Zuei-Ching Chen, Heat shock proteins of thermophilic and thermotolerant fungi from Taiwan Botanical Bulletin of Academia Sinica. ,vol. 45, pp. 247- 257 ,(2004) , 10.7016/BBAS.200407.0247
I.M. Banat, P. Nigam, D. Singh, R. Marchant, A.P. McHale, Ethanol production at elevated temperatures and alcohol concentrations: Part I - Yeasts in general World Journal of Microbiology & Biotechnology. ,vol. 14, pp. 809- 821 ,(1998) , 10.1023/A:1008802704374
A SUES, R MILLATI, L EDEBO, M TAHERZADEH, Ethanol production from hexoses, pentoses, and dilute-acid hydrolyzate by Mucor indicus Fems Yeast Research. ,vol. 5, pp. 669- 676 ,(2005) , 10.1016/J.FEMSYR.2004.10.013
N. Van Uden, Temperature Profiles of Yeasts Advances in Microbial Physiology Volume 25. ,vol. 25, pp. 195- 251 ,(1985) , 10.1016/S0065-2911(08)60293-3
Z CAKAR, U SEKER, C TAMERLER, M SONDEREGGER, U SAUER, Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae Fems Yeast Research. ,vol. 5, pp. 569- 578 ,(2005) , 10.1016/J.FEMSYR.2004.10.010
Lisbeth Olsson, Bärbel Hahn-Hägerdal, Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme and Microbial Technology. ,vol. 18, pp. 312- 331 ,(1996) , 10.1016/0141-0229(95)00157-3
Karin Öhgren, Jari Vehmaanperä, Matti Siika-Aho, Mats Galbe, Liisa Viikari, Guido Zacchi, High temperature enzymatic prehydrolysis prior to simultaneous saccharification and fermentation of steam pretreated corn stover for ethanol production Enzyme and Microbial Technology. ,vol. 40, pp. 607- 613 ,(2007) , 10.1016/J.ENZMICTEC.2006.05.014
Kazuyoshi Ohta, Sushila Chandrani Wijeyaratne, Shinsaku Hayashida, Temperature-sensitive mutants of a thermotolerant yeast, Hansenula polymorpha Journal of Fermentation Technology. ,vol. 66, pp. 455- 459 ,(1988) , 10.1016/0385-6380(88)90014-3
Hiroyuki HIRAISHI, Mai MOCHIZUKI, Hiroshi TAKAGI, Enhancement of stress tolerance in Saccharomyces cerevisiae by overexpression of ubiquitin ligase Rsp5 and ubiquitin-conjugating enzymes Bioscience, Biotechnology, and Biochemistry. ,vol. 70, pp. 2762- 2765 ,(2006) , 10.1271/BBB.60250