Mapping Deforestation in North Korea Using Phenology-Based Multi-Index and Random Forest

作者: Seunggyu Jeong , Yihua Jin , Sunyong Sung , Dong Lee , Gregory Biging

DOI: 10.3390/RS8120997

关键词:

摘要: Phenology-based multi-index with the random forest (RF) algorithm can be used to overcome the shortcomings of traditional deforestation mapping that involves pixel-based …

参考文章(57)
Leo Breiman, Random Forests Machine Learning archive. ,vol. 45, pp. 5- 32 ,(2001) , 10.1023/A:1010933404324
Andrew D. Richardson, John O’Keefe, Phenological Differences Between Understory and Overstory Springer, New York, NY. pp. 87- 117 ,(2009) , 10.1007/978-1-4419-0026-5_4
Sinan A. Abood, Janice Ser Huay Lee, Zuzana Burivalova, John Garcia-Ulloa, Lian Pin Koh, Relative Contributions of the Logging, Fiber, Oil Palm, and Mining Industries to Forest Loss in Indonesia Conservation Letters. ,vol. 8, pp. 58- 67 ,(2015) , 10.1111/CONL.12103
G GARIKGUTMAN, Monitoring land ecosystems using the NOAA Global Vegetation Index data set Global and Planetary Change. ,vol. 4, pp. 195- 200 ,(1991) , 10.1016/0921-8181(91)90092-B
BRENT N. HOLBEN, Characteristics of maximum-value composite images from temporal AVHRR data International Journal of Remote Sensing. ,vol. 7, pp. 1417- 1434 ,(1986) , 10.1080/01431168608948945
Pietro Ceccato, Stéphane Flasse, Stefano Tarantola, Stéphane Jacquemoud, Jean-Marie Grégoire, Detecting vegetation leaf water content using reflectance in the optical domain Remote Sensing of Environment. ,vol. 77, pp. 22- 33 ,(2001) , 10.1016/S0034-4257(01)00191-2
Vahid Eisavi, Saeid Homayouni, Ahmad Maleknezhad Yazdi, Abbas Alimohammadi, Land cover mapping based on random forest classification of multitemporal spectral and thermal images Environmental Monitoring and Assessment. ,vol. 187, pp. 291- ,(2015) , 10.1007/S10661-015-4489-3
Compton J. Tucker, Remote sensing of leaf water content in the near infrared Remote Sensing of Environment. ,vol. 10, pp. 23- 32 ,(1980) , 10.1016/0034-4257(80)90096-6
Emily Hoffhine Wilson, Steven A Sader, Detection of forest harvest type using multiple dates of Landsat TM imagery Remote Sensing of Environment. ,vol. 80, pp. 385- 396 ,(2002) , 10.1016/S0034-4257(01)00318-2