Fast Solver for the Local Discontinuous Galerkin Discretization of the KdV Type Equations

作者: Ruihan Guo , Yan Xu

DOI: 10.4208/CICP.210114.080814A

关键词:

摘要: In this paper, we will develop a fast iterative solver for the system of linear equations arising from the local discontinuous Galerkin (LDG) spatial discretization and additive Runge-Kutta (ARK) time marching method for the KdV type equations. Being implicit in time, the severe time step , with the k-th order of the partial differential equations (PDEs)) restriction for explicit methods will be removed. The equations at the implicit time level are linear and we demonstrate an efficient, practical multigrid (MG) method for solving the equations. In particular, we numerically show the optimal or sub-optimal complexity of the MG solver and a two-level local mode analysis is used to analyze the convergence behavior of the MG method. Numerical results for one-dimensional, two-dimensional and three-dimensional cases are given to illustrate the efficiency and capability of the LDG method coupled with the multigrid method for solving the KdV type equations.

参考文章(14)
J. L. Bona, H. Chen, O. Karakashian, Y. Xing, Conservative, discontinuous Galerkin–methods for the generalized Korteweg–de Vries equation Mathematics of Computation. ,vol. 82, pp. 1401- 1432 ,(2013) , 10.1090/S0025-5718-2013-02661-0
Christopher A. Kennedy, Mark H. Carpenter, Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations Applied Numerical Mathematics. ,vol. 44, pp. 139- 181 ,(2003) , 10.1016/S0168-9274(02)00138-1
F. Bassi, A. Ghidoni, S. Rebay, Optimal Runge–Kutta smoothers for the p-multigrid discontinuous Galerkin solution of the 1D Euler equations Journal of Computational Physics. ,vol. 230, pp. 4153- 4175 ,(2011) , 10.1016/J.JCP.2010.04.030
Bernardo Cockburn, Chi-Wang Shu, The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems SIAM Journal on Numerical Analysis. ,vol. 35, pp. 2440- 2463 ,(1998) , 10.1137/S0036142997316712
Hailiang Liu, Jue Yan, The Direct Discontinuous Galerkin (DDG) Methods for Diffusion Problems SIAM Journal on Numerical Analysis. ,vol. 47, pp. 675- 698 ,(2008) , 10.1137/080720255
Yan Xu, Chi-Wang Shu, Local discontinuous Galerkin methods for two classes of two-dimensional nonlinear wave equations Physica D: Nonlinear Phenomena. ,vol. 208, pp. 21- 58 ,(2005) , 10.1016/J.PHYSD.2005.06.007
Hailiang Liu, Jue Yan, A local discontinuous Galerkin method for the Korteweg-de Vries equation with boundary effect Journal of Computational Physics. ,vol. 215, pp. 197- 218 ,(2006) , 10.1016/J.JCP.2005.10.016
Ruihan Guo, Yan Xu, Efficient Solvers of Discontinuous Galerkin Discretization for the Cahn–Hilliard Equations Journal of Scientific Computing. ,vol. 58, pp. 380- 408 ,(2014) , 10.1007/S10915-013-9738-4
F. Bassi, A. Ghidoni, S. Rebay, P. Tesini, High‐order accurate p‐multigrid discontinuous Galerkin solution of the Euler equations International Journal for Numerical Methods in Fluids. ,vol. 60, pp. 847- 865 ,(2009) , 10.1002/FLD.1917