The Hausdorff Dimension of the Penrose Universe

作者: L Marek-Crnjac , None

DOI: 10.1155/2011/874302

关键词:

摘要: Penrose fractal tiling is one of the simplest generic examples for a noncommutative space. In present work, we determine Hausdorff dimension corresponding to four-dimensional analogue so-calledPenrose Universe and show how it could be used in resolving various fundamental problems high energy physics cosmology.

参考文章(12)
V. S. Sunder, Vaughan F. R. Jones, Introduction to subfactors ,(1997)
M. S. El Naschie, Superstrings, Knots, and Noncommutative Geometry in \(E^{{\text{(}}\infty {\text{)}}} \) Space International Journal of Theoretical Physics. ,vol. 37, pp. 2935- 2951 ,(1998) , 10.1023/A:1026679628582
F Büyükkılıç, D Demirhan, None, Cumulative Diminuations with Fibonacci Approach, Golden Section and Physics International Journal of Theoretical Physics. ,vol. 47, pp. 606- 616 ,(2008) , 10.1007/S10773-007-9484-1
Leila Marek-Crnjac, None, E-infinity Cantorian space–time from subfactors and knot theory Chaos Solitons & Fractals. ,vol. 32, pp. 916- 919 ,(2007) , 10.1016/J.CHAOS.2006.06.021
Martin C. Gutzwiller, Jorge V. José, Chaos in classical and quantum mechanics ,(1990)
M.S. El Naschie, A review of E infinity theory and the mass spectrum of high energy particle physics Chaos Solitons & Fractals. ,vol. 19, pp. 209- 236 ,(2004) , 10.1016/S0960-0779(03)00278-9
M.S. El Naschie, Banach-Tarski theorem and Cantorian micro space-time Chaos Solitons & Fractals. ,vol. 5, pp. 1503- 1508 ,(1995) , 10.1016/0960-0779(95)00052-6