Eulerian polynomials for subarrangements of Weyl arrangements

作者: Masahiko Yoshinaga , Tan Nhat Tran , Ahmed Umer Ashraf

DOI: 10.1016/J.AAM.2020.102064

关键词:

摘要: Let $\mathcal{A}$ be a Weyl arrangement. We introduce and study the notion of $\mathcal{A}$-Eulerian polynomial producing an Eulerian-like for any subarrangement $\mathcal{A}$. This together with shift operator describe how characteristic quasi-polynomial new class arrangements containing ideal subarrangements can expressed in terms Ehrhart fundamental alcove. The method also extended to define two types deformed families Shi, Catalan, Linial compute their quasi-polynomials. obtain several known results literature as specializations, including formula via theory due Athanasiadis (1996), Blass-Sagan (1998), Suter (1998) Kamiya-Takemura-Terao (2010); relating number coweight lattice points parallelepiped Lam-Postnikov Eulerian third author.

参考文章(24)
Hiroaki Terao, Peter Orlik, Arrangements of hyperplanes ,(1992)
Petter Brändén, Luca Moci, The multivariate arithmetic Tutte polynomial Transactions of the American Mathematical Society. ,vol. 366, pp. 5523- 5540 ,(2014) , 10.1090/S0002-9947-2014-06092-3
Matthias Beck, Thomas Zaslavsky, Inside-out polytopes Advances in Mathematics. ,vol. 205, pp. 134- 162 ,(2006) , 10.1016/J.AIM.2005.07.006
Drew Armstrong, Brendon Rhoades, The Shi arrangement and the Ish arrangement Transactions of the American Mathematical Society. ,vol. 364, pp. 1509- 1528 ,(2012) , 10.1090/S0002-9947-2011-05521-2
James E. Humphreys, Reflection groups and coxeter groups ,(1990)
Kevin Dilks, T. Kyle Petersen, John R. Stembridge, Affine descents and the Steinberg torus Advances in Applied Mathematics. ,vol. 42, pp. 423- 444 ,(2009) , 10.1016/J.AAM.2008.11.002
Beifang Chen, Suijie Wang, Comparison on the coefficients of characteristic quasi-polynomials of integral arrangements Journal of Combinatorial Theory, Series A. ,vol. 119, pp. 271- 281 ,(2012) , 10.1016/J.JCTA.2011.09.001
A. Bhattacharya, G.R. Vijayakumar, An integrality theorem of root systems The Journal of Combinatorics. ,vol. 28, pp. 1854- 1862 ,(2007) , 10.1016/J.EJC.2006.02.006