Clustering validity checking methods

作者: Maria Halkidi , Yannis Batistakis , Michalis Vazirgiannis

DOI: 10.1145/601858.601862

关键词:

摘要: Clustering results validation is an important topic in the context of pattern recognition. We review approaches and systems this context. In first part paper we presented clustering validity checking based on internal external criteria. second, current part, present a relative Also discuss experimental study widely known indices. Finally illustrates issues that are under-addressed by recent proposes research directions field.

参考文章(19)
Olfa Nasraoui, Raghu Krishnapuram, Hichem Frigui, Quadratic shell clustering algorithms and the detection of second-degree curves Pattern Recognition Letters. ,(1993)
Maria Halkich, Michalis Vazirgiannis, A Data Set Oriented Approach for Clustering Algorithm Selection european conference on principles of data mining and knowledge discovery. pp. 165- 179 ,(2001) , 10.1007/3-540-44794-6_14
Padhraic Smyth, Clustering using Monte Carlo cross-validation knowledge discovery and data mining. pp. 126- 133 ,(1996)
M. Halkidi, M. Vazirgiannis, Y. Batistakis, Quality Scheme Assessment in the Clustering Process european conference on principles of data mining and knowledge discovery. pp. 265- 276 ,(2000) , 10.1007/3-540-45372-5_26
M. Halkidi, M. Vazirgiannis, Clustering validity assessment: finding the optimal partitioning of a data set international conference on data mining. pp. 187- 194 ,(2001) , 10.1109/ICDM.2001.989517
M. Ramze Rezaee, B.P.F. Lelieveldt, J.H.C. Reiber, A new cluster validity index for the fuzzy c-mean Pattern Recognition Letters. ,vol. 19, pp. 237- 246 ,(1998) , 10.1016/S0167-8655(97)00168-2
Glenn W. Milligan, Martha C. Cooper, An examination of procedures for determining the number of clusters in a data set Psychometrika. ,vol. 50, pp. 159- 179 ,(1985) , 10.1007/BF02294245
N.R. Pal, J. Biswas, Cluster validation using graph theoretic concepts Pattern Recognition. ,vol. 30, pp. 847- 857 ,(1997) , 10.1016/S0031-3203(96)00127-6
James C. Bezdek, Robert Ehrlich, William Full, FCM: The fuzzy c-means clustering algorithm Computers & Geosciences. ,vol. 10, pp. 191- 203 ,(1984) , 10.1016/0098-3004(84)90020-7