Classification and Functional Separable Solutions to Extended Nonlinear Wave Equations

作者: Shun-Li Zhang , Sen-Yue Lou , Chang-Zheng Qu , Rui-Hong Yue

DOI: 10.1088/6102/44/4/589

关键词:

摘要: The generalized conditional symmetry approach is applied to study the variable separation of extended wave equations. Complete classification those equations admitting functional separable solutions obtained and exact some resulting are constructed.

参考文章(50)
P. G. Estévez, C. Z. Qu, Separation of Variables in a Nonlinear Wave Equation with a Variable Wave Speed Theoretical and Mathematical Physics. ,vol. 133, pp. 1490- 1497 ,(2002) , 10.1023/A:1021190509331
Zhang Shun-Li, Lou Sen-Yue, Variable Separation and Derivative-Dependent Functional Separable Solutions to Generalized Nonlinear Wave Equations Communications in Theoretical Physics. ,vol. 41, pp. 161- 174 ,(2004) , 10.1088/0253-6102/41/2/161
E. G. Kalnins, Willard Miller, Differential‐Stäckel matrices Journal of Mathematical Physics. ,vol. 26, pp. 1560- 1565 ,(1985) , 10.1063/1.526917
E. G. Kalnins, W. Miller, Generalized Stäckel matrices Journal of Mathematical Physics. ,vol. 26, pp. 2168- 2173 ,(1985) , 10.1063/1.526840
Xiao-yan Tang, Sen-yue Lou, Ying Zhang, Localized excitations in (2+1)-dimensional systems. Physical Review E. ,vol. 66, pp. 046601- ,(2002) , 10.1103/PHYSREVE.66.046601
Giuseppe Saccomandi, Potential symmetries and direct reduction methods of order two Journal of Physics A. ,vol. 30, pp. 2211- 2217 ,(1997) , 10.1088/0305-4470/30/6/039
R. Z. Zhdanov, Separation of variables in (1+2)-dimensional Schrödinger equations Journal of Mathematical Physics. ,vol. 38, pp. 1197- 1217 ,(1997) , 10.1063/1.531874
D. J. ARRIGO, J. M. HILL, P. BROADBRIDGE, Nonclassical symmetry reductions of the linear diffusion equation with a nonlinear source Ima Journal of Applied Mathematics. ,vol. 52, pp. 1- 24 ,(1994) , 10.1093/IMAMAT/52.1.1
Sen-yue Lou, Xiao-yan Tang, Ji Lin, Similarity and conditional similarity reductions of a (2+1)-dimensional KdV equation via a direct method Journal of Mathematical Physics. ,vol. 41, pp. 8286- 8303 ,(2000) , 10.1063/1.1320859